


Lecture Notes in Computer Science 4279
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Naoki Kobayashi (Ed.)

Programming
Languages
and Systems

4th Asian Symposium, APLAS 2006
Sydney, Australia, November 8-10, 2006
Proceedings

13



Volume Editor

Naoki Kobayashi
Tohoku University, Graduate School of Information Sciences
Department of Computer and Mathematical Sciences
6-3-9 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi 980-8579, Japan
E-mail: koba@ecei.tohoku.ac.jp

Library of Congress Control Number: 2006935552

CR Subject Classification (1998): D.3, D.2, F.3, D.4, D.1, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-48937-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48937-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11924661 06/3142 5 4 3 2 1 0



Preface

This volume contains the proceedings of the 4th Asian Symposium on Program-
ming Languages and Systems (APLAS 2006), which took place in Sydney, Japan,
November 8-10, 2006. The symposium was sponsored by the Asian Association
for Foundation of Software.

In response to the call for papers, 70 full submissions were received. Each
submission was reviewed by at least three Program Committee members with
the help of external reviewers. The Program Committee meeting was conducted
electronically over a 2-week period. After careful discussion, the Program Com-
mittee selected 22 papers. I would like to sincerely thank all the members of the
APLAS 2006 Program Committee for their excellent job, and all the external
reviewers for their invaluable contribution. The submission and review process
was managed using the CyberChair system.

In addition to the 22 contributed papers, the symposium also included two
invited talks by Jens Palsberg (UCLA, Los Angeles, USA) and Peter Stuckey
(University of Melbourne, Melbourne, Australia), and one tutorial by Matthew
Flatt (University of Utah, USA).

Many people helped to promote APLAS as a high-quality forum in Asia to
serve programming language researchers worldwide. Following a series of well-
attended workshops that were held in Singapore (2000), Daejeon (2001), and
Shanghai (2002), the first three formal symposiums were held in Beijing (2003),
Taipei (2004) and Tsukuba (2005).

I am grateful to the General Co-chairs, Manuel Chakravarty and Gabriele
Keller, for their invaluable support and guidance that made our symposium
in Sydney possible. I would like to thank the AAFS Chair Tetsuo Ida and the
Program Chairs of the past APLAS symposiums, Atsushi Ohori, Wei-Ngan Chin,
and Kwangkeun Yi, for their advice. I am also thankful to Eijiro Sumii for serving
as the Poster Chair. Last but not least, I thank Kohei Suenaga for his help in
handling the CyberChair system and other administrative matters.

September 2006 Naoki Kobayashi
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Type Processing by Constraint Reasoning

Peter J. Stuckey1,2, Martin Sulzmann3, and Jeremy Wazny2

1 NICTA Victoria Laboratory
2 Department of Computer Science and Software Engineering

University of Melbourne, 3010 Australia
{pjs, jeremyrw}@cs.mu.oz.au

3 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Abstract. Herbrand constraint solving or unification has long been un-
derstood as an efficient mechanism for type checking and inference for
programs using Hindley/Milner types. If we step back from the particular
solving mechanisms used for Hindley/Milner types, and understand type
operations in terms of constraints we not only give a basis for handling
Hindley/Milner extensions, but also gain insight into type reasoning even
on pure Hindley/Milner types, particularly for type errors. In this paper
we consider typing problems as constraint problems and show which con-
straint algorithms are required to support various typing questions. We
use a light weight constraint reasoning formalism, Constraint Handling
Rules, to generate suitable algorithms for many popular extensions to
Hindley/Milner types. The algorithms we discuss are all implemented as
part of the freely available Chameleon system.

1 Introduction

Hindley/Milner type checking and inference has long been understood as a pro-
cess of solving Herbrand constraints, but typically the typing problem is not first
mapped to a constraint problem and solved, instead a fixed algorithm, such as
algorithm W using unification, is used to infer and check types. We argue that
understanding a typing problem by first mapping it to a constraint problem gives
us greater insight into the typing in the first place, in particular:

– Type inference corresponds to collecting the type constraints arising from
an expression. An expression has no type if the resulting constraints are
unsatisfiable.

– Type checking corresponds to checking that the declared type, considered
as constraints, implies (that is has more information than) the inferred type
(constraints collected from the definition).

– Type errors of various classes: ambiguity, subsumption errors; can all be
explained better by reasoning on the type constraints.

Strongly typed languages provide the user with the convenience to significantly
reduce the number of errors in a program. Well-typed programs can be guaranteed
not to “go wrong” [22], with respect to a large number of potential problems.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 1–25, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P.J. Stuckey, M. Sulzmann, and J. Wazny

Typically type processing of a program either checks that types declared for
each program construct are correct, or, better, infers the types for each program
construct and checks that these inferred types are compatible with any declared
types. If the checks succeed, the program is type correct and cannot “go wrong”.

However, programs are often not well-typed, and therefore must be modified
before they can be accepted. Another important role of the type processor is to
help the author determine why a program has been rejected, what changes need
to be made to the program for it to be type correct.

Traditional type inference algorithms depend on a particular traversal of the
syntax tree. Therefore, inference frequently reports errors at locations which are
far away from the actual source of the problem. The programmer is forced to
tackle the problem of correcting his program unaided. This can be a daunting
task for even experienced programmers; beginners are often left bewildered.

Our thesis is that by mapping the entire typing problem to a set of constraints,
we can use constraint reasoning to (a) concisely and efficiently implement the
type processor and (b) accurately determine where errors may occur, and aid
the programmer in correcting them. The Chameleon [32] system implements this
for rich Hindley/Milner based type languages.

We demonstrate our approach via three examples. Note that throughout the
paper we will adopt Haskell [11] style syntax in examples.

Example 1. Consider the following ill-typed program:

f ’a’ b True = error "’a’"

f c True z = error "’b’"

f x y z = if z then x else y

f x y z = error "last"

Here error is the standard Haskell function with type ∀a.[Char] → a. GHC
reports:

mdef.hs:4:

Couldn’t match ‘Char’ against ‘Bool’

Expected type: Char

Inferred type: Bool

In the definition of ‘f’: f x y z = if z then x else y

What’s confusing here is that GHC combines type information from a number
of clauses in a non-obvious way. In particular, in a more complex program, it
may not be clear at all where the Char and Bool types it complains about come
from. Indeed, it isn’t even obvious where the conflict in the above program is. Is
it complaining about the two branches of the if-then-else (if so, which is Char
and which Bool?), or about z which might be a Char, but as the conditional
must be a Bool?

The Chameleon system reports:1

1 The currently available Chameleon system (July 2005) no longer supports these more
detailed error messages, after extensions to other parts of the system. The feature
will be re-enabled in the future. The results are given from an earlier version.
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multi.hs:1: ERROR: Type error - one error found

Problem : Definition clauses not unifiable

Types : Char -> a -> b -> c

d -> Bool -> e -> f
�

�

�

�
g -> g -> h -> i

Conflict: f ’a’ b True = error "’a’"

f c True z = error "’b’"
�

�

�

�
f

�

�

�

�
x

�

�

�

�
y z = if z

�

�

�

�
then

�

�

�

�
x

�

�

�

�
else

�

�

�

�
y

Note we do not mention the last definition equation which is irrelevant to the
error.

If we assume the actual error is that the True in the second definition should
be a ’b’ through some copy-and-paste error, then it is clear that the GHC error
message provides little help in discovering it. The Chameleon error certainly
implicates the True in the problem and gives type information that should direct
the programmer to the problem quickly.

As part of the diagnosis the system “colours” both the conflicting types and
certain program locations. A program location which contributes to any of the
reported conflicting types is highlighted in the same style as that type. Locations
which contribute to multiple reported types are highlighted in a combination of
the styles of the types they contribute to. (There are no such locations in the
case above.)

The above example illustrates the fundamental problems with any traditional
Hindley/Milner type inference like algorithms W [22]. The algorithms suffer from
a bias derived from the way they traverse the abstract syntax tree (AST). The
second problem is that being tied to unification, which is only one particular
implementation of a constraint solving algorithm for tree constraints, they do
not treat the problem solely as a constraint satisfaction problem.

The problems of explaining type errors are exacerbated when the type system
becomes more complex. Type classes [34] are an important extension to Hind-
ley/Milner types, allowing principled (non-parametric) overloading. But the ex-
tension introduces new classes of errors and complicates typing questions. Type
classes are predicates over types, and now we have to admit that type processing
is a form of reasoning over first order formulae about types.

Example 2. Consider the following program which is typical of the sort of mis-
take that beginners make. The base case sum [] = [] should read sum [] = 0.
The complexity of the reported error is compounded by Haskell’s overloading of
numbers.

sum [] = []

sum (x:xs) = x + sum xs

sumLists = sum . map sum

GHC does not report the error in sum until a monomorphic instance is re-
quired, at which point it discovers that no instance of Num [a] exists. This
means that unfortunately such errors may not be found through type checking
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alone – it may remain undiscovered until someone attempts to run the program.
The function sumLists forces that here, and GHC reports:

sum.hs:4:

No instance for (Num [a]) arising from use of ‘sum’ at sum.hs:3

Possible cause: the monomorphism restriction applied to the following:

sumLists :: [[[a]]] -> [a] (bound at sum.hs:3)

Probable fix: give these definition(s) an explicit type signature

In the first argument of ‘(.)’, namely ‘sum’

In the definition of ‘sumLists’: sumLists = sum . (map sum)

The error message is completely misleading, except for the fact that the prob-
lem is there is no instance of Num [a]. The probable fix will not help.

For this program Chameleon reports the following:

sum.hs:4: ERROR: Missing instance

Instance:Num [a]: sum [] = []

sum (x:xs) = x + sum xs

This indicates that the demand for this instance arises from the interaction
between [] on the first line of sum and (+) on the second. The actual source of
the error is highlighted.

The advantages of using constraint reasoning extend as the type system becomes
even more complex. Generalized Algebraic Data Types (GADTs) [3,36] are one
of the latest extensions of the concept of algebraic data types. They have at-
tracted a lot of attention recently [24,25,26]. The novelty of GADTs is that the
(result) types of constructor may differ. Thus, we may make use of additional
type equality assumptions while typing the body of a pattern clause.

Example 3. Consider the following example of a GADT, using GHC style no-
tation, where List a n represents a list of as of length n. Type constructors Z
and S are used to represent numbers on the level of types.

data Z -- zero

data S n -- successor

data List a n where

Nil :: List a Z

Cons :: a -> List a m -> List a (S m)

We can now express much more complex behaviour of our functions, for example

map :: (a -> b) -> List a n -> List b n

map f Nil = Nil

map f (Cons a l) = Cons (f a) (map f l)

which guarantees that the map function returns a list of the same length as its
input.

GADTs introduce more complicated typing problems because different bodies
of the same function can have different types, since they act under different
assumptions. This makes the job of reporting type errors much more difficult.
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Example 4. Consider defining another GADT to encode addition among our
(type) number representation.

data Sum l m n where

Base :: Sum Z n n

Step :: Sum l m n -> Sum (S l) m (S n)

We make use of the Sum type class to refine the type of the append function.
Thus, we can state the desired property that the length of the output list equals
the sum of the length of the two input lists.

append2 :: Sum l m n -> List a l -> List a m -> List a n

append2 Base Nil ys = Nil -- wrong!! should be ys

append2 (Step p) (Cons x xs) ys = Cons x (append p xs ys)

For this program GHC reports

append.hs:17:22:

Couldn’t match the rigid variable ‘n’ against ‘Z’

‘n’ is bound by the type signature for ‘append2’

Expected type: List a n

Inferred type: List a Z

In the definition of ‘append2’: append2 Base Nil ys = Nil

For this program Chameleon currently reports:

ERROR: Polymorphic type variable ‘n’(from line 13, col. 56) instantiated by

append2 :: Sum l m n -> List a l -> List a m -> List a n

append2 Base Nil ys = Nil -- wrong!! should be ys

Here we can determine the actual locations that cause the subsumption error to
occur. We could also give information on the assumptions made, though presently
Chameleon does not. We aim in the future to produce something like:

append.hs:10: ERROR: Inferred type does not subsume declared type

Problem: The variable ’m’ makes the declared type too polymorphic

Under the assumptions l = Z and m = n arising from

append2 Base Nil ys = Nil

Declared: Sum Z m m -> List a Z -> List a m -> List a m

Inferred: Sum Z m m -> List a Z -> List a m -> List a Z

append2 Base Nil ys = Nil -- wrong!! should be ys

Our advantage is that we use a constraint-based system where we main-
tain information which constraints arise from which program parts. GHC ef-
fectively performs unification under a mixed prefix, hence, GHC only knows
which ’branch’ failed but not exactly where.

As the examples illustrate, by translating type information to constraints with
locations attached we can use constraint reasoning on the remaining constraint
problem. The constraint reasoning maintains which locations caused any infer-
ences it makes, and we can then use these locations to help report error messages
much more precisely. In this paper we show how to translate complex typing
problems to constraints and reason about the resulting typing problems.
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The rest of the paper is organized as follows. In Section 2 we introduce our
language for constraints, and the CHR formalism for constraint reasoning. We
show how constraint algorithms for satisfiability and inference are expressible
using CHRs. In Section 3 we show how we map a functional program to a CHR
program defining the type constraints. We then in Section 4 examine typing in
Hindley/Milner using our system, before considering reporting errors in Hind-
ley/Milner in Section 5. We add type classes in Section 6, and show how that
changes type inference and checking, and introduces new kinds of type errors.
We then briefly consider further extensions such as functional dependencies, pro-
grammed type extensions and GADTs in Section 7. We conclude with a brief
discussion of related work. Much of the technical underpinnings to material in
this paper has appeared previously, and so we leave the presentation as quite
informal. For more details the reader is referred to [6,28,29,30,31,35].

2 Constraints and CHRs

In this section we introduce constraints with location annotations, and our frame-
work for constraint reasoning, Constraint Handling Rules.

We use notation ō to refer to a sequence of objects o, usually types or variables.
Out type language is standard, we assume type variables a, function types t → t
and user definable data types T t̄. We use common Haskell notation for writing
function, pair, list types, etc.

We make use of two kinds of constraints – equations and user-defined con-
straints. An equation is of the form t1 = t2, where t1 and t2 are types that
share the same structure as types in the language. User-defined constraints are
written U t̄ or f(t). We use these two forms to distinguish between constraints
representing type class overloading and those arising from function definitions.

Conjunctions of constraints are sometimes written using a comma separator
instead of the Boolean connective ∧. We often treat conjunctions as sets of con-
straints. We assume a special (always satisfiable) constraint True representing
the empty conjunction of constraints, and a special never-satisfiable constraint
False. If C is a conjunction we let Ce be the equations in C and Cu be the
user-defined constraints in C. We assume the usual definitions of substitution,
most general unifier (mgu), etc. see e.g. [20]. We define mgu(C) to return a most
general unifier of the equations C.

We will make use of justified constraints which have a list of labels repre-
senting program locations attached. The justification of a constraint refers to
the program locations from which the constraint arose. We shall denote justi-
fied constraints using a subscript list of locations, and typically write singleton
justified constraints C[i] as simply Ci. We write J1 ++ J2 to represent the result
of appending justification J2 to the end of J1. For our purposes, we can safely
remove any repeated location which appears to the right of another occurrence
of that location. e.g. [1, 2, 1, 3, 2] becomes [1, 2, 3].

In addition to the Boolean operator ∧ (conjunction), we make use of ⊃ (impli-
cation) and ↔ (equivalence) and quantifiers ∃ (existential) and ∀ (universal) to
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express conditions in formal statements, typing rules etc. We assume that fv(o)
computes the free variables not bound by any quantifier in an object o. We write
∃̄o.F as a short-hand for ∃fv(F ) − fvo.F where F is a first-order formula and
o is an object. Unless otherwise stated, we assume that formulae are implicitly
universally quantified. We refer to [27] for more details on first-order logic.

Constraint Handling Rules with Justifications. We will translate typing
problems to a constraint problem where the meaning of the user-defined con-
straints is defined by Constraint Handling Rules (CHRs) [8]. CHRs manipulate
a global set of primitive constraints, using rewrite rules of two forms

simplification (r1) c1, . . . , cn ⇐⇒ d1, . . . , dm

propagation (r2) c1, . . . , cn =⇒ d1, . . . , dm

where c1, . . . , cn are user-defined constraints, d1, . . . , dm are constraints, and r1
and r2 are labels by which we can refer to these rules. We will often omit rule
labels when they are not necessary. A CHR program P is a set of CHRs.

In our use of the rules, constraints occurring on the right hand side of rules
have justifications attached. We extend the usual derivation steps of Constraint
Handling Rules to maintain and extend these justifications.

A simplification derivation step applying a (renamed apart) rule instance r ≡
c1, . . . , cn ⇐⇒ d1, . . . , dm to a set of constraints C is defined as follows. Let
E ⊆ Ce where θ = mgu(E). Let D = {c′1, . . . , c′n} ⊆ Cu, and suppose there exists
substitution σ on variables in r such that {θ(c′1), . . . , θ(c′n)} = {σ(c1), . . . , σ(cn)},
i.e. a subset of Cu matches the left hand side of r under the substitution given
by E. The justification J of the matching is the union of the justifications of
E ∪ D. Note that there may be multiple subsets of Ce which satisfy the above
condition and allow matching to occur. For our purposes, however, we require
the subset E to be minimal. i.e. no strict subset of E can allow for a match. An
algorithm for finding such an E is detailed later in this section.

Then we create a new set of constraints C′ = C − {c′1, . . . , c′n} ∪ {θ(c′1) =
c1, . . . , θ(c′n) = cn, (d1)J+, . . . , (dn)J+}. Note that the equation θ(c′i) = ci is
shorthand for θ(s1) = t1, . . . , θ(sm) = tm where c′i ≡ p(s1, . . . , sm)J′ and ci ≡
p(t1, . . . , tm).

The annotation J+ indicates that we add the justification set J to the begin-
ning of the original justification of each di. The other constraints (the equality
constraints arising from the match) are given empty justifications. Indeed, this is
sufficient. The connection to the original location in the program text is retained
by propagating justifications to constraints on the right hand side only.

A propagation derivation step applying a (renamed apart) rule instance r ≡
c1, . . . , cn =⇒ d1, . . . , dm is defined similarly except the resulting set of con-
straints is C′ = C ∪ {θ(c′1) = c1, . . . , θ(c′n) = cn, (d1)J+, . . . , (dn)J+}.

A derivation step from global set of constraints C to C′ using an instance of
rule r is denoted C −→r C′. A derivation, denoted C −→∗

P C′ is a sequence
of derivation steps using rules in P where no derivation step is applicable to
C′. The operational semantics of CHRs exhaustively apply rules to the global
set of constraints, being careful not to apply propagation rules twice on the



8 P.J. Stuckey, M. Sulzmann, and J. Wazny

same constraints (to avoid infinite propagation). For more details on avoiding
re-propagation see e.g. Abdennadher[1].

Example 5. Consider the following CHRs.

g(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

A CHR derivation from the goal g8 where 8 stands for a hypothetical program
location, is shown below. To help the reader, we underline constraints involved
in rule applications.

g(t)8
−→ t = t4, (t1 = Char)[8,1], f(t2)[8,2], (t2 = t1 → t3)[8,3], (t4 = t3)[8,4]

−→ t = t4, (t1 = Char)[8,1], t2 = t7, (t5 = Bool)[8,2,5], (t6 = Bool)[8,2,6],
(t7 = t5 → t6)[8,2,7], (t2 = t1 → t3)[8,3], (t4 = t3)[8,4]

Note that we have not bothered to rename any of the new constraints, since all
the variables are already distinct, and no rule is applied more than once. In the
first step, the constraint g(t)8 matches the left hand side of the first CHR. We
replace g(t)8 by the right hand side. In addition, we add the matching equation
t = t4. Note how the justification from g(t)8 is added to each justification set.
Thus, by propagating justifications we retain the connection constraints and
the program locations from which these constraints were originating from. In
the final step, the constraint f(t2)[8,2] matches the left hand side of the second
CHR. Hence, we add [8, 2] to the constraints on the right hand side of g’s CHR.

Because of the highly nondeterministic operational semantics, an important
property of a CHR program is confluence, which demands that each possible or-
der of rule applications leads to the same results (modulo renaming). That is, if
C −→ C′ and C −→ C′′, then C′ −→∗

P D and C′′ −→∗
P D′ where ∃̄CD ↔ ∃̄CD′.

We will demand that the CHR programs we use are confluent. Another impor-
tant property is termination. A set P of CHRs is terminating iff for each C we
find D such that C −→∗

P D. Again we will demand that the CHR programs we
use are terminating.

A common restriction on a CHRs C ⇐⇒ D or C =⇒ D is range restric-
tion, that is, fv(φ(D)) ⊆ fv(φ(C) where φ = mgu(De). Usually it holds because
fv(D) ⊆ fv(C). Range restrictedness essentially prevents new variables from be-
ing introduced by rules. We will also restrict attention to CHR programs where
simplification rules are single-headed, that is, of the form c ⇐⇒ d1, . . . , dm.

Given a CHR program P which is confluent, terminating, range-restricted
and only includes single-headed simplification rules, we can define a number of
constraint operations.

Satisfiability. We use an open world assumption for satisfiability of CHR con-
straints, that is, we assume we can always add a new rule making a new fixed
type constraint hold. In that case unsatisfiability can only result from the equa-
tions. We can check that C is satisfiable by determining C −→∗

P D and checking
that De is satisfiable.
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min unsat(D)

M := ∅
while satisfiable(M) {
C := M
while satisfiable(C)
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪{e}}
return M

min impl(D,∃ā.F)
M := ∅
while ¬implies(M,∃ā.F ) {
C := M
while ¬implies(C,∃ā.F )
{ let e ∈ D − C; C := C ∪ {e} }

D := C; M := M ∪ {e} }
return M

(a) (b)

Fig. 1. Constraint manipulation algorithms

Minimal Unsatisfiable Subsets. Given an unsatisfiable constraint D, we will
be interested in finding a minimal subset E of De such that E is unsatisfiable.
An unsatisfiable set is minimal if the removal of any constraint from that set
leaves it satisfiable. The Chameleon system simply finds an arbitrary minimal
unsatisfiable subset. An algorithm is shown in Figure 1(a).

Example 6. Consider the final constraint of Example 5. It is unsatisfiable, ap-
plying min unsat to this constraint yields.

(t1 = Char)[8,1], t2 = t7, (t5 = Bool)[8,2,5], (t7 = t5 → t6)[8,2,7], (t2 = t1 → t3)[8,3]

Ultimately, we are interested in the justifications attached to minimal unsat-
isfiable constraints. This will allow us to identify problematic locations in the
program text.

We can straightforwardly determine which constraints e ∈ M must occur in
all minimal unsatisfiable subsets, since this is exactly those where D − {e} is
satisfiable. The complexity (for both checks) is O(|D|2) using an incremental
unification algorithm. A detailed analysis of the problem of finding all minimal
unsatisfiable constraints can be found in [9].

Implication Testing. Given the restrictions on CHR programs defined above,
we can show that they provide a canonical normal form (see [28] for details), that
is, every equivalent constraint is mapped to an equivalent (modulo renaming)
result. We can use an equivalence check to determine implication of ∃̄V C ⊃ ∃̄V C′,
where we assume C and C′ are renamed apart except for V , as follows. We
execute C −→∗

P D and C,C′ −→∗
P D′, then check that φ(Du) is a renaming of

φ′(D′
u), where φ = mgu(De) and φ′ = mgu(D′

e).

Minimal Implicants. We are also interested in finding minimal systems of
constraints that imply another constraint. Assume that C −→∗

P D where |= D ⊃
∃ā.F . We want to identify a minimal subset E of D such that |= E ⊃ ∃ā.F . The
algorithm for finding minimal implicants is highly related to that for minimal
unsatisfiable subsets.

The code for min impl is identical to min unsat except the test satisfiable(S)
is replaced by ¬implies(S, ∃ā.F ). It is shown in Figure 1(b).
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Expressions e ::= fl | xl | (λxl.e)l | (e e)l | (case e of ([(pi → ei)l]i∈I)l)l

Patterns p ::= xl | (K p...p)l

Types t ::= a | t→ t | T t̄
Primitive Constraints at ::= t = t | TC t
Constraints C ::= at | C ∧ C
Type Schemes σ ::= t | ∀ā.C ⇒ t
Fun Decls fd ::= f :: (C ⇒ t)l | fl = e
Data Decls dd ::= data T a = K t
Type Class Decls tc ::= class (C ⇒ TC ā)l wherem :: (C ⇒ t)l | instance C ⇒ (TC t̄)l

Programs FP ::= ε | fd FP | dd FP | tc FP

Fig. 2. Syntax of Programs

The test implies(M, ∃ā.F ) can be performed as follows. If F is a system
of equations only, we build φ = mgu(Me) and φ′ = mgu(Me ∧ F ) and check
that φ(a) = φ′(a) for all variables except those in ā. If F includes user defined
constraints, then for each user-defined constraint ci ∈ Fu we nondeterministically
choose a user-defined constraint c′i ∈ M . We then check that implies(M, ∃ā.(Fe∧
ci = c′i) holds as above. We need to check all possible choices for c′i (although we
can omit those which obviously lead to failure, e.g. ci = Eq a and c′i = Ord b).

3 Type Processing

Our approach to type processing follows [5] by translating the typing problem
into a constraint problem and inferring and checking types by constraint op-
erations. We map the type information to a set of Constraint Handling Rules
(CHRs) [8], where the constraints are justified by program locations.

3.1 Expressions, Types and Constraints

The syntax of programs can be found in Figure 2. Using case expressions we can
easily encode multiple-clause definitions: and if-then-else expressions which we
will make use of in our examples. For brevity we omit nested function definitions
and recursive functions. They are straightforward to handle, but messy; for a
complete treatment see [35].

Note that our expressions are fully labeled, i.e. we label program locations
with unique numbers. We indicate these labels by a subscript l following the
expression, as can be seen in the language description above. Labels will become
important when generating constraints from a source program.

We assume that K refers to constructors of user-defined data types. As usual
patterns are assumed to be linear, i.e., each variable occurs at most once. In
examples we will use pattern matching notation for convenience. Note that
each pattern/action has a location, as well as a location for the list of all pat-
tern/actions and a location for the case.

We assume data type declarations data T ā = K t1 · · · tn are preprocessed
and the types of constructors K : ∀ā.t1 → · · · → tn → T ā are recorded in the
environment E.
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Type schemes have an additional constraint component which allows us to
restrict the set of type instances. We often refer to a type scheme as a type for
short. Note that we consider ∀ā.t as a short-hand for ∀ā.T rue ⇒ t.

We also ignore the bodies of instance declarations for brevity, they don’t add
any significant extra complication.

3.2 Constraint Generation from Expressions

The basic idea of our translation is that we map a functional program FP to a
CHR program P . For each function f defined by the program FP we introduce
a unary predicate f in P such that the solutions of f(t) are the types of f .

Constraint generation is formulated as a logical deduction system with clauses
of the form E,Γ, e �Cons (F t) where the environment E of all pre-defined
functions, environment Γ of lambda-bound variables, and expression e are input
parameters and constraint C and type t are output parameters.

Each individual sub-expression gives rise to a constraintwhich is justified by the
location attached to this sub-expression. See Figure 3 for details. In rule (Var-x)
we simply look up the type of a λ-bound variable in Γ . The rule (Var-x) creates a
renamed apart copy of the type of a predefined let-bound function. In rule (Var-f)
we generate an “instantiation” constraint, to represent the type of a let-defined
function, we use the notation [b/a] to define a substitution replacing each a ∈ ā
by the corresponding b ∈ b̄. In rule (Case) we first equate the types of all pat-
tern/actions, and then treat the remainder like an application. In rule (Pat) we
make use of auxiliary judgments of the form p �Cons ∀b̄.(C t Γp) which we
use to generate types and constraints from patterns, as well as to extend the type
environment with newly bound variables. The other rules are straightforward.

4 Hindley/Milner Types

We begin by restricting ourselves to programs without type classes or instances.
This leaves us in the case of pure Hindley/Milner types. Generation of CHRs
is straightforward by iteration over the program. The function definition f =
e generates the rule f(t) ⇐⇒ C where E, ∅, e �Cons (C, t). This defines the
predicate f encoding the type of function f . The function declaration f : (C ⇒
t)l generates the rule fa(t′) ⇐⇒ Cl ∧ (t = t′)l. This defines the predicate fa

encoding the annotated type of f .

Example 7. For example the (location annotated) program

(g = (f2 ’a’1)3)4

(f True5 = True6)7

is translated to (after some simplification2):

g(t4) ⇐⇒ (t1 = Char)1, f(t2)2, (t2 = t1 → t3)3, (t4 = t3)4
f(t7) ⇐⇒ (t5 = Bool)5, (t6 = Bool)6, (t7 = t5 → t6)7

2 The desugared definition of f is f = λx.(case x of True → True) creating a much
bigger but equivalent set of constraints.
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(Var-x)
(x : t) ∈ Γ tl fresh

E,Γ, xl 
Cons ((tl = t)l t′)

(Var-p)
f : ∀ā.C ⇒ t ∈ E b̄,tl fresh

E,Γ, fl 
Cons ([b/a]C)l ∧ (tl = [b/a]t)l t′)

(Var-f)
f : σ �∈ E tl fresh

E,Γ, fl 
Cons (f(tl)l tl)

(Abs)
E,Γ.x : tl1 , e 
Cons (C t) tl1 , tl2 , t

′ fresh

E,Γ, (λxl1 .e)l2 
Cons (C ∧ (tl2 = t′ → t)l2 ∧ (tl1 = t′)l1 tl2)

(App)
E,Γ, e1 
Cons (C1 t1) Γ, e2 
Cons (C2 t2) tl fresh

E,Γ, (e1 e2)l 
Cons (C1 ∧ C2 ∧ (t1 = t2 → tl)l tl)

(Case)

E,Γ, e 
Cons (Ce te)

E,Γ, (pi → ei) 
Cons (Ci ti) for i ∈ I
C ≡

V
i∈I((tl1 = ti)l1 ∧ Ci) ∧ (tl1 = te → tl2)l2 tl1 , tl2 fresh

E,Γ, (case e of ([pi → ei]i∈I)l1)l2 
Cons (C tl2)

(Pat)

p 
Cons (Cp tp Γ ′) E,Γ ∪ Γ ′, e 
Cons (Ce te)

C ≡ Cp ∧ Ce ∧ (tl = tp → te)l tl fresh

E,Γ, (p→ e)l 
Cons (C tl)

(Pat-Var)
t fresh

xl 
Cons (True tl {x : tl})

(Pat-K)

pi 
Cons (tpi Cpi Γpi) for i = 1, ..., n

K : ∀ā.tK Γp = Γ ∪
S

i=1,...,n Γpi tl fresh

C′ ≡ (tK = tp1 → ...→ tpn → tl)l ∧
V

i∈{1,..,n} Cpi

(K p1 ... pn)l 
Cons (C′ tl Γp)

Fig. 3. Justified Constraint Generation

Example 8. The (location annotated) program

h :: (Int -> (Int,Int))1

(h x2 = (x3, x4)5)6

is translated to

ha(t1) ⇐⇒ (t1 = Int → (Int, Int))1
h(t6) ⇐⇒ (t2 = tx)2, (t3 = tx)3, (t4 = tx)4, (t5 = (t3, t4))5, (t6 = t2 → t5)6

In this framework it is now easy to see the correspondences between typing
questions and constraint algorithms.
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Type Inference. Type inference for an expression e corresponds to building a
canonical normal form of the constraint generated from e. Type inference of a
function f simply involves executing the goal f(t) −→∗

P C. The type of f is ∃̄tC.

Example 9. For the program of Example 7, if we wish to infer the type of g,
we determine C such that g(t) −→∗

P C. The generated constraint is shown in
Example 5. Since the resulting constraints are not satisfiable g has no type.

Example 10. Consider the program in Example 8. The goal h(t) −→∗
P C1 gen-

erates the constraint

C1 ≡ t = t6∧(t2 = tx)2∧(t3 = tx)3∧(t4 = tx)4∧(t5 = (t3, t4))5∧(t6 = t2 → t5)6

which is satisfiable. A simplified equivalent constraint to ∃̄tC1 is ∃tx.t = tx →
(tx, tx) which we report as the type of h as h : ∀tx.tx → (tx, tx).

Type Checking. Type checking of a function definition f = e with respect
to its declared type f : C ⇒ t requires us to test implication. Since we have
two constraints defining the inferred and declared type we simply need to check
implication. Let f(t) −→∗

P C and fa(t) −→∗
P C′. Then the declared type is

correct if ∃̄tC
′ ⊃ ∃̄tC. We can use the implication checking algorithm discussed

in Section 2.

Example 11. Consider the program in Example 8. The goal ha(t) −→∗
P C2 gen-

erates
C2 ≡ (t = Int → (Int, Int)1

C1 ∧ C2 ≡ (t = Int → (Int, Int))1 ∧ C1

The corresponding substitutions are identical on t. Hence the declared type is
correct.

5 Type Error Reporting

The most important insight we gain from understanding typing problems as
constraint problems in the case of pure Hindley/Milner types is what to do when
it goes wrong! Since we have mapped typing questions to constraint questions,
we immediately have more insight into why failure occurred. In this section we
consider what it means about the corresponding constraint problem when type
inference or type checking fails. We then use this to define better error messages.

5.1 Failure of Type Inference

A program is ill-typed if the constraints on its type are unsatisfiable. Before the
program can be run, it must be modified, but obviously any such modification
must actually fix the problem at hand. Our task then, is to report the type
error in such a way that the programmer is directed towards the locations in
the source code which are potentially the source of the error, and if modified
appropriately, would fix the program.

Suppose type inference fails for a function f , then we have an unsatisfiable
set of constraints C arising from f(t) −→∗

P C. The key insight we obtain from
the constraint view is this:
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A type error results from a minimal unsatisfiable set of constraints.

We dont need to consider all constraints in C to have a type error. Hence we
should report errors as minimal unsatisfiable sets of constraints. Note there are
many possible minimal unsatisfiable sets, and different sets will generate different
error reports (see [35] for examples).

We can find M a single minimal unsatisfiable subset of C, employing the
algorithm of Section 2 (we will just take the first generated). Such a set represents
a “smallest” type error, and the corresponding locations give a smallest collection
of program locations which caused the error. The simplest scheme for reporting
an error is simply to highlight all the locations of the source text which make
up a type error.

Example 12. When we try to infer a type for g in Example 7 we obtain the
constraints shown in Example 5. Since these are unsatisfiable we find a minimal
unsatisfiable subset as shown in Example 6. The set of locations involved are
{1, 2, 3, 5, 7, 8} The type error can be reported as

g = f ’a’

f True = True

This indicates a conflict between the application of f to ’a’ in g, and f’s pat-
tern. Importantly, because we have used a minimal unsatisfiable subset of the
inconsistent constraints, we have only highlighted the locations which are actu-
ally involved in the error; the True in the body of f is not part of the conflict,
and therefore not highlighted.

Note that we do not highlight applications since they have no explicit tokens in
the source program. We leave it to the user to understand when we highlight a
function position we may also refer to its application.

To remain efficient, we only consider a single minimal unsatisfiable subset
of constraints at a time. Given the number of constraints generated during in-
ference, calculating all minimal unsatisfiable subsets is simply not feasible. As
mentioned in Section 2, however, it is inexpensive to find any constraints which
appear in all minimal unsatisfiable subsets.

For type error reporting purposes, finding a non-empty intersection of all
minimal unsatisfiable subsets is significant, since those constraints correspond
to source locations which are part of every type conflict present. These common
locations are much more likely to be the actual source of the mistake.

Example 13. The following simple program, where functions toUpper and
toLowerare standardHaskell functions both with typeChar → Char, is ill-typed.

(f x2 = (if3 x4 then5 (toUpper6 x7)8 else9 (toLower10 x11)12)1

It’s plain to see that there is a conflict between the use of x at type Bool in
the conditional, and at type Char in both branches of the if-then-else. Hence,
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there are two minimal unsatisfiable subsets of the above constraints. Common
to both of these are the (location annotated) constraints listed below.

(t3 = Bool)3, (t4 = t1)4,

This strongly suggests that the real source of the mistake in this program lies at
location 3 or 4. We might report this by highlighting the source text as follows.

f x = (if x then (toUpper x) else (toLower x))

Indeed, changing the expression at location 4 to something like x > ’m’ would
resolve both type conflicts, whereas changing either of the two branches would
only fix one.

Just highlighting the locations causing a type error is not very informative.
Usually type errors are reported as an incompatibility of two types, an expected
type and an inferred type. Given our much more detailed constraint viewpoint
we can do better. Our algorithm for generating text error messages with type
information, from a minimal unsatisfiable set of justified constraints, is as follows:

1. Select a location from the minimal unsatisfiable set to report the type conflict
about

2. Find the types that conflict at that location
– Assign each a colour and determine which locations contribute to it

3. Diagnose the error in terms of the conflicting types at the chosen location.
Highlight each location involved in the colours of the types it contributes to.

Although we can pick any location, we have found that usually the highest
location in the abstract syntax tree occuring in the minimal unsatisfiable subset
leads to the clearest error messages. If l is the highest location appearing in M ,
we remove all equations added by location l to obtain M ′. Now M ′ is satisfiable
(since we have removed at least one equation from a minimal unsatisfiable set)
and we can use it to determine the types reported. We will choose locations
l′ to report the types of depending on the kind of location l. Importantly if
φ = mgu(M ′) and φ(tl′ ) = t′ we report the type of location l′ as t′ and highlight
the locations from M ′ of a minimal implicant of tl′ = t′.

We can define a specific type error for each different kind of location. For
brevity we just give an example, see [31,35] for more details.

Example 14. For a location corresponding to incompatible types for pattern/
actions in a case ([pi → ei]i∈I)l we remove all the constraints of the form (tl = ti)l

occuring in M . We now report the types ti of each pattern/action entry pi → ei

as defined by M ′.
Example 1 is an example of incompatible types of a pattern/actions (in the

desugared version). For this example, we remove the equations forcing each
clause for f to have the same type. We then determine the type of each clause
independently, and find minimal implicants of these types. By highlighting each
type and its implicant locations in the same color we can see why the types
arose.
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Note that the types only consider constraints in the minimal unsatisfiable subset,
so that the type of the first alternative is reported as Char -> a -> b -> c
rather than Char -> a -> Bool -> c which we might expect.

5.2 Failure of Type Checking

When type checking fails for f : C → t; f = e we have that f(t) −→∗
P C and

fa(t) −→∗
P C′ and its not the case that ∃̄tC

′ ⊃ ∃̄tC. If ∃̄tC is False we have a
failure of type inference and can report a problem as in the previous subsection.
Otherwise we can choose any constraint in ∃̄tC not implied by ∃̄tC

′.
There are choices in how to do this. Currently Chameleon chooses in the

following way. We consider the substitutions φ = mgu(C′) and φ′ = mgu(C∧C′).
Choose a variable a ∈ φ(t) where φ′(a) �= a. We then determine the minimal
subset D of C such that D ∧ C′ ⊃ a = φ′(a). We make use of the min impl
algorithm described in Section 2 to find D. This describes a minimal reason why
the variable a was bound in the inferred type.

Example 15. Consider the following modification of the program in Example 8

h :: (a -> (a,b))1

(h x2 = (x3, x4)5)6

is translated to

ha(t1) ⇐⇒ (t1 = (a → (a, b)))1
h(t6) ⇐⇒ (t2 = tx)2, (t3 = tx)3, (t4 = tx)4, (t5 = (t3, t4))5, (t6 = t2 → t5)6

We find that φ = {t �→ a → (a, b)} while φ′ = {t �→ a → (a, a), tx �→ a, b �→ a}.
We find φ′(b) �= b. We determine a minimal implicant of C ∧C′ for b = a, which
is {(t1 = (a → (a, b)))1, (t6 = t2 → t5)6, (t5 = (t3, t4))5, (t2 = tx)2, (t4 = tx)4, }.
The resulting set of locations are highlighted.

h.hs:2: ERROR: Inferred type does not subsume declared type

Declared: forall a,b. a -> (a,b)

Inferred: forall a. a -> (a,a)

Problem : The variable ‘b’ makes the declared type too polymorphic

h x = (x, x)

The GHC error message explains the same problem in inferred and declared type
but can’t point us at any location that caused the problem.

6 Type Class Overloading

Type classes and instances are a popular extension of Hindley/Milner types that
give controlled overloading. We now extend our notion of constraints to incor-
porate classes and instances. Again we use CHRs to encode their meaning. We
then revisit the typing questions once more. The class declaration and instance
declaration generate the following CHRs:
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class (C ⇒ TC ā)l1 wherem :: (D ⇒ t)l2 TC ā =⇒ Cl1

ma(t) ⇐⇒ t = tl2 , Dl2 , (TC ā)l2

instance E ⇒ (TC t̄)l3 TC t̄ ⇐⇒ El3

The first rule ensures the super-class constraint hold, that is if TC ā then the
super class constraints C also hold. The location annotation ensure we see they
arise from the class declaration. The second rule defines the type of the method
m. The third rule encodes the proof that an instance is available through the
instance rules. We omit instance method declarations for simplicity, they simply
create more type checking.

Example 16. The table below shows class and instance declarations below and
their translation (where we ignore instance method declarations for brevity).

class (Eq a)1 where Eq a =⇒ True1

(==) :: (a -> a -> Bool)2 (==)(t2) ⇐⇒ (t2 =a→ a → Bool)2, (Eq a)2
class (Eq a => Ord a)3 where Ord a =⇒ (Eq a)3

(>) :: (a -> a -> Bool)4 (>)(t4) ⇐⇒ (t4 =a →a→Bool)4,(Ord a)4
instance (Ord a => Ord [a])5 Ord [a] ⇐⇒ (Ord a)5
instance (Ord Bool)6 Ord Bool ⇐⇒ True6

Note that the super-class relation encoded by the CHR states that each occur-
rence of Ord a implies (Eq a)3. Note that right hand sides of CHRs generated
are justified, so we can keep track which rules were involved when inspecting
justifications attached to constraints.

Our assumptions on CHRs require that the CHRs generated from class and
instance declarations are confluent, terminating, range-restricted and single-
headed simplification. The last two properties are easy to check, and, fortunately,
the first two properties are guaranteed by the conditions imposed on Haskell type
classes. An in-depth discussion can be found in [6].

Type inference in the presence of type classes and instances works as follows.
To infer the type of f we determine f(t) −→∗

P C and give the inferred type of f
as f :: φ(Cu) ⇒ φ(t) where φ = mgu(Ce).

6.1 Failure of Type Inference

As in the pure Hindley/Milner case a failure of type inference can give an unsat-
isfiable set of constraints C. Unsatisfiability of a set of constraints can only arise
through an unsatisfiable set of term equations, since the assumption is that the
classes and instances follow an open world assumption, another instance could
be added at any time in order to satisfy any remaining class constraints. Hence
we can use the same mechanisms as for pure Hindley/Milner.

But there are two new kinds of type error that can now occur.

Missing Instance Error. In Haskell 98, type classes are single-parameter and
each argument of a type class appearing within a functions type φ(Cu), must be
a single variable (a). A non-conforming constraint is one whose arguments have
not been reduced to this form, indicating that there is a missing instance error.
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For a missing instance error to occur a class constraint T a must occur in C
such that φ(a) is not a variable. We can determine the reason this constraint
occurs in C using minimal implications. Let L be the set of locations occurring
on the constraint (T a)L. Now φ(a) is not a variable (or variable applied to
arguments) so it is a term with top level type constructor K of arity n say. We
determine the minimal implicants in C of ∃ȳ.a = K ȳ. Collecting the locations
L′ of this minimal implicant with the locations L introducing T a we have the
reasons why the missing instance is involved.

Example 17. Re-examining Example 2 from the introduction: the inferred type
is sum :: Num [a] ⇒ [[a]] → [a]. The missing instance Num [a] arise from an
initial class constraint Num b introduced by + and b = [a] which is implied by
the result of sum in the first definition arising from the [] on the right of the
equality. Hence we obtain error message shown in Example 2.

Ambiguity Error. An important restriction usually made on types is that
they are unambiguous. A type ∃̄tC is unambiguous if fixing t fixes all the exis-
tentially quantified variables in ∃̄tC. Programs with ambiguous types can lead
to operationally nondeterministic behaviour.

We can use CHRs to check unambiguity as follows. A type ∃̄tC is unambiguous
if ρ is a renaming of fv(C) we determine C ∧ ρ(C) ∧ t = ρ(t) −→∗

P D. If D ⊃
a = ρ(a) for all a ∈ fv(C) then f is unambiguous.

In reporting ambiguity we highlight the locations where the ambiguous vari-
able is part of the type, since each such location could be improved to re-
move the ambiguity. For ease of reporting we only consider only a variable
a ∈ ā = fv(φ(Cu)) where φ = mgu(Ce). If the type ∃̄tC is ambiguous, then
the test must fail for one of these variables. Examining a location variable tl we
can see if a occurs in its type, if a ∈ fv(φ(tl)). We highlight all locations where
this test succeeds.

Example 18. Consider the following program, where read :: Read a ⇒ [Char] →
a and show :: Show a ⇒ a → [Char],

f x y z = show (if x then read y else read z)

The inferred type is ambiguous since the type a of read y and read z does not
appear in the type of f . GHC reports the error as follows

amb.hs:3:26:

Ambiguous type variable ‘a’ in the constraints:

‘Read a’ arising from use of ‘read’ at amb.hs:3:26-29

‘Show a’ arising from use of ‘show’ at amb.hs:3:10-13

Probable fix: add a type signature that fixes these type variable(s)

Chameleon highlights the positions where the type variable a appears as part of
the type:

ambig.ch:9: ERROR: Inferred type scheme is ambiguous:

Type scheme: forall a. (Read a,Show a)=> Bool ->[Char] -> [Char] -> [Char]

Suggestion: Ambiguity can be resolved at these locations

f x y z = show (if x then read y else read z)
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illustrating that the ambiguity can be removed by type annotations on either call
to read, or on the if-then-else. Note how effectively GHC picks just one instance
of read to concentrate on.

6.2 Failure of Type Checking

Now type checking can fail in a new way, since the types are no longer simply
sets of equations. We now have to consider that a type class constraint is not
implied. This ends up actually easier than the case for equations.

Recall that f(t) −→∗
P C and fa(t) −→∗

P C′. Let φ = mgu(C′
e) and φ′ =

mgu(Ce∧C′
e). Suppose we have a constraint φ′(T ā) ∈ φ′(Cu) such that φ′(T ā) �∈

φ(Cu). Suppose (T ā)L is the location annotated version of this constraint in
Cu, we highlight the locations L which causes the unmatched class constraint to
arise.

Example 19. Consider the following program

notNull :: Eq a => [a] -> Bool

notNull xs = xs > []

The inferred type is Ord a ∧ Eq a ⇒ a → Bool, while the declared type is
Eq a ⇒ a → Bool. We determine the locations that cause the Ord a class
constraint to arise, and highlight them.

We report the following.

notNull.hs:2: ERROR: Inferred type does not subsume declared type

Declared: forall a. Eq a => [a] -> Bool

Inferred: forall a. Ord a => [a] -> Bool

Problem : Constraint Ord a, from following location, is unmatched.

notNull :: Eq a => [a] -> Bool

notNull xs = xs > []

It should be noted that GHC also seems to do well at reporting this sort of
error; it appears to record the source location of each user constraint, so it can
then report where any unmatched constraints come from.

GHC raises the following error:

notNull.hs:2:

Could not deduce (Ord a) from the context (Eq a)

arising from use of ‘>’ at notNull.hs:2

Probable fix:

Add (Ord a) to the type signature(s) for ‘notNull’

In the definition of ‘notNull’: notNull xs = xs > []

Other Haskell systems such as Hugs [16] and nhc98 [23], however, report the
error without identifying the program locations responsible.

7 Extended Type Systems

We now consider further extensions to Hindley/Milner types and how they can
be incorporated. Chameleon [32] supports all the features we discuss below.
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7.1 Functional Dependencies

Functional dependencies [17] are an important extension for multi-parameter
type classes. They allow the programmer to specify depencies between arguments
of multi-parameter type classes, and hence improve type inference. Classes with
functional dependencies are translated using additional CHRs for each functional
dependency, and for each instance and functional dependency.

Example 20. The following type class models a collection relationship ce is a
collection of es.

class (Collects ce e)1 | (ce -> e)2 where

empty :: ce

insert :: e -> ce -> ce

instance (Collects Integer Bool)3 where ...

instance Eq a => (Collects [a] a)4 where ...

The functional dependency ce → e states that there is at most one element type
e for each collection type ce. Without this empty is ambiguous.

The additional CHRs are

Collects ce e1, Collects ce e2 =⇒ (e1 = e2)2
Collects Integer b =⇒ (b = Bool)[2,3]

Collects [a] b =⇒ (b = a)[2,4]

The first enforces the functional dependency on two Collects constraints with
the same collection type. The last two are improvement rules for each instance.
Once we know the collection type is Integer, we know the element type is Bool,
and once we know the collection type is [a] we know the element type is a.

We can show (see [6]) that Haskell programs with functional dependencies satis-
fying the restrictions in [17] lead to confluent, terminating, range-restricted and
single-headed simplication programs, so our type framework is usable without
modification. The only new difficulty arises in error reporting. Functional de-
pendencies can create unsatisfiable constraints where the location l occuring in
a justification but tl does not appear in the constraints. We overcome this by
reporting the error on the usage of the functional dependency.

Example 21. The function

f ce = insert ’a’ (insert True c)

is incorrect since we cannot have a Bool and Char in the same collection. GHC
declares:

collects.hs:5:

Couldn’t match ‘Bool’ against ‘Char’

Expected type: Bool

Inferred type: Char

When using functional dependencies to combine

Collects ce Bool, arising from use of ‘insert’ at collects.hs:7

Collects ce Char, arising from use of ‘insert’ at collects.hs:7

When generalizing the type(s) for ‘f’
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We report:

collects.hs:5: ERROR: Functional dependency causes type error

Types : Char
�

�

�

�
Bool

Problem : class Collects ce e | ce -> e ...

Enforces: Collects ce e1, Collects ce e2 ==> e1 =
�

�

�

�
e2

On constraints:

Collects ce Char (from line 5, col. 7)

Collects ce Bool (from line 5, col. 19)

Conflict: f c = insert ’a’ (
�

�

�

�
insert

�

�

�

�
True c)

Note here we have multiple “colour” highlighting. The calls to insert both
generate Collects constraint and define the types of variables e1 and e2 so they
are highlighted in both ways.

The advantage of our error report is that we are not limited to identifying just
the locations of the Collects constraints above, we can straightforwardly point
out all of the other complicit locations, and identify which of the conflicting
types they contribute to.

7.2 Adhoc Type Improvements

In Chameleon the user is allowed to write their own CHRs, which become part
of the program P . This can be used to improve type inference and checking.

Example 22. Consider the following class and instance building a zip-like func-
tion zipall for zipping an arbitrary number of arguments:

class Zip a b c | c -> b, c -> a where

zipall :: [a] -> [b] -> c

instance Zip a b [(a,b)] where zipall = zip

instance Zip (a,b) c e => Zip a b ([c]->e) where

zipall as bs cs = zipall (zip as bs) cs

As it stands type inference for

e = head (zipall [’a’,’b’] [True,False] [’c’])

will return e :: ∀a.Zip (Char,Bool) Char [a] ⇒ a. We can add an improving
propagation rules to enforce that whenever the third argument of a Zip con-
straint is a list type, rather than a function type, it is a list of pairs of the first
two. In Chameleon format this is

rule Zip a b [c] ==> c = (a,b)

With this rule we infer e :: ((Char,Bool), Char) as expected.

Arbitrary rule additions may break confluence, termination, range-restrictedness
and single-headed simplification (the last two of which we can check). Currently
we assume the user enforces confluence and termination. We can handle type
error reporting with adhoc rules using the same approach as for functional de-
pendencies, choosing the last rule fired. This does highlight the future need for
better error reporting by explaining a sequence of CHR rule firings.
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7.3 Extended Algebraic Data Types

Guarded algebraic data types illustrated in Example 4 significantly complicate
type processing. Chameleon supports GADTs through a more generalized form,
Extended Algebraic Data Types (EADTs) [33] which also generalizes existen-
tial types. EADTs extend the translation to constraints to include quantified
implication constraints of the form

ImpConstraints F ::= C | ∀b̄.(C ⊃ ∃ā.F ) | F ∧ F

This makes type inference in general impossible, since there may be an in-
finite number of maximal types, so we concentrate on type checking. Essen-
tially the type checking procedure must check that the implication constraint
∀b̄.(C ⊃ ∃ā.F ) is implied by the declared type C′. In checking this implication
we effectively check if C∧C′ ⊃ ∃ā.F . If the implication fails we have a subsump-
tion error like that illustrated in Example 4. See [35] for an extended discussion
of type errors for EADTs.

8 Related Work

The starting point for this work was [5] which translated Hindley/Milner types
to a set of Horn clauses rather than CHRs. The advantage of CHRs is that we can
easily accommodate more advanced type extensions like type classes. Another
difference to [5] is that we attach justifications to constraints to keep track of
program locations.

Despite recent efforts [4,21,15,10], we believe there remains a lot of scope for
improving the quality of type error diagnoses. For example, almost all other
work we are aware of has focused on the plain Hindley/Milner type system and
excludes features like type-class overloading [34] which are critical in languages
like Haskell and Clean (the one exception is the recent paper by Heeren and
Hage [13]).

The standard algorithm, W , tends to find errors too late in its traversal of a
program [18,37]. W has been generalised [18] so that the point at which substi-
tutions are applied can be varied. Despite this, there are cases where it is not
clear which variation provides the most appropriate error report. Moreover, all
of these algorithms suffer from a left-to-right bias when discovering errors during
abstract syntax tree (AST) traversal.

One way to overcome this problem, as we have seen, is to avoid the stan-
dard inference algorithms altogether and focus directly on the constraints in-
volved. Although our work bears a strong resemblance to [12,14,15], our aims
are different. We attempt to explain errors involving advanced type system fea-
tures, such as overloading, whereas the Helium system [15], which is based on a
beginner-friendly variant of Haskell, omits such features by design. Their focus
has been on inventing heuristics which allow them to present type errors from
a more useful perspective, as well as automatically suggesting “probable fixes.”
More recently [13] they propose extending their source language with so-called
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‘type class directives’, which provide restrictions on certain forms of type classes
(such as making Num [a] illegal). These can be straightforwardly encoded using
Chameleon rules.

Closest to our work is probably that of Haack and Wells [10] who also, in-
dependently, propose using minimal unsatisfiable subsets of typing constraints
to identify problematic program locations. The main difference between their
work and ours is that they focus entirely on the standard Hindley/Milner sys-
tem, limiting their constraint domain to equations, and only report errors by
highlighting the locations involved. Another limitation of their proposal is that
it lacks any way to generate type explanations, which we do by finding minimal
implicants. Such a facility is necessary for explaining subsumption errors.

Another related research direction is error explanation systems [7,2], which
allow the user to examine the process by which specific types are inferred for
program variables. By essentially recording the effects of the inference procedure
on types a step at a time, a complete history can be built up. Unfortunately,
a common shortcoming of such systems is the excessive size of of explanations.
Although complete, such explanations are full of repetitive and redundant infor-
mation which can be a burden to sort through. Furthermore, since these systems
are layered on top of an existing inference algorithm, they suffer from the same
left-to-right bias when discovering errors.

9 Conclusion

We have presented a flexible type processing system for Hindley/Milner types
and extensions which naturally supports advanced type error reporting and rea-
soning techniques. The central idea of our approach is to translate the typing
problem to a constraint problem, i.e. a set of constraints where function rela-
tions are expressed in terms of CHRs. Individual constraints are justified by the
location of their origin. During CHR solving we retain these locations. CHRs are
a sufficiently rich constraint language to encode the typing problem for a wide
range of extensions of the Hindley/Milner system such as type-class overload-
ing and functional dependencies. The techniques explained in this paper have all
been implemented as part of the Chameleon system [32] which is freely available.

The basic machinery we use here can also be used in an interactive type
debugging framework (see [29,30]). Clearly as type systems become more and
more complicated these interactive forms of type debugging, which for example
can explain why a function has an inferred type of a certain shape, become
much important. We can also straightforwardly extend our approach to create
specialised error messages for library functions or CHR rules in the manner of
Helium (see [35] for details).

By lifting type algorithms from adhoc specialized algorithms to generic con-
straint reasoning algorithms our approach offers the advantages of uniformity
(allowing easier handling of extensions) as well as a clear semantics (which
for example allowed us to give the first proof of the soundness and complete-
ness of Jones functional dependency restrictions [6]). As types become more
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complicated, we need to make use of the existing deep understanding of con-
straints and first order predicate logic, in order to handle them correctly. Typing
problems will also inevitably push us to develop new constraint algorithms, for
example constraint abduction [19] seems required for inference of GADTs.
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Abstract. We observe that the combination of multi-parameter type
classes with existential types and type annotations leads to a loss of
principal types and undecidability of type inference. This may be a
surprising fact for users of these popular features. We conduct a con-
cise investigation of the problem and are able to give a type inference
procedure which, if successful, computes principal types under the con-
ditions imposed by the Glasgow Haskell Compiler (GHC). Our results
provide new insights on how to perform type inference for advanced type
extensions.

1 Introduction

Type systems are important building tools in the design of programming lan-
guages. They are typically specified in terms of a set of typing rules which are
formulated in natural deduction style. The standard approach towards estab-
lishing type soundness is to show that any well-typed program cannot go wrong
at run-time. Hence, one of the first tasks of a compiler is to verify whether a
program is well-typed or not.

The trouble is that typing rules are often not syntax-directed. Also, we often
have a choice of which types to assign to variables unless we demand that the
programmer supplies the compiler with this information. However, using the
programming language may then become impractical. What we need is a type
inference algorithm which automatically checks whether a program is well-typed
and as a side-effect assigns types to program text.
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For programming languages based on the Hindley/Milner system [19] we can
typically verify that type inference is complete and the inferred type is princi-
pal [1]. Completeness guarantees that if the program is well-typed type inference
will infer a type for the program whereas principality guarantees that any type
possibly given to the program can be derived from the inferred type.

Here, we ask the question whether this happy situation continues in the case
of multi-parameter type classes (MPTCs) [13], a popular extension of the Hind-
ley/Milner system and available as part of Haskell [21] implementations such
as GHC [5] and HUGS [9]. GHC and HUGS also support (boxed) existential
types [17] and type annotations [20].1 It is the combination of all these features
that make MPTCs so popular among programmers.

In this paper, we make the following contributions:

– We answer the above question negatively. We show that the combination of
MPTCs with type annotations and existential types does not enjoy principal
types and type inference is undecidable in general (Section 2).

– However, under the GHC [5] multi-parameter type class conditions, we can
give a procedure where every inferred type is principal among all types (Sec-
tion 4).

We omit proofs for brevity, sketches can be found in [26].
To the best of our knowledge, we are the first to point out precisely the prob-

lem behind type inference for MPTCs. Previous work [3] only reports
the loss of principal types but does not provide many clues about how to tackle
the inference problem.

We have written this introduction as if Haskell (GHC and HUGS) is the only
language (systems) that supports MPTCs. Type classes are also supported in
a number of other languages such as Mercury [7,10], HAL [2] and Clean [22].
However, as far as we know there is no formal description of multi-parameter
type classes and the combination with existential types and type annotations.
From now on, we will use MPTCs to refer to the system that combines all these
features. For example, Läufer [16] only considered the combination of single-
parameter type classes and existential types. The only formal description avail-
able is our own previous work [27] where we introduce the more general system
of extended algebraic data types (EADTs). Notice that in [27] we discuss type
checking but not type inference.

In the next section, we give a cursory introduction to MPTCs as supported
in GHC based on a simple example. We refer to [13] for further examples and
background material on MPTCs.

2 Multi-parameter Type Classes

Example. We use MPTCs for the implementation of a stack ADT.

1 For the purposes of this paper, we will use the term “type inference” to refer to type
inference and checking in the presence of type annotations.
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class StackImpl s a where
pushImpl :: a->s->s
popAndtopImpl :: s->Maybe (s,a)

instance StackImpl [a] a where
pushImpl = (:)
popAndtopImpl [] = Nothing
popAndtopImpl (x:xs) = Just (xs, x)

In contrast to a single-parameter type class, a multi-parameter type class such
as StackImpl describes a relation among its type parameters s (the stack)
and a (the type of elements stored in a stack). The methods pushImpl and
popAndtopImpl provide a minimal interface to a stack. We also provide a con-
crete implementation using lists.

With the help of an existential type, the stack implementation can be encap-
sulated:

data Stack a = forall s. StackImpl s a => Stck s

Each stack is parameterized in terms of the element type a whereas the actual
stack s is left abstract as indicated by the forall keyword. We generally refer
to variables such as s as abstract variables. When scrutinizing a stack we are
not allowed to make any specific assumptions about s. The type class constraint
(a.k.a. context) StackImpl s a supplies each stack with its essential operations.
We use here a combination of multi-parameter type classes and existential types.

It is then straightforward to implement the common set of stack operations.

push :: a -> Stack a -> Stack a
push x (Stck s) = Stck (pushImpl x s)
pop :: Stack a -> Stack a
pop (Stck s) = case (popAndtopImpl s) of

Just (s’,x::a) -> Stck s’ -- (1)

top :: Stack a -> a
top (Stck s) = case (popAndtopImpl s) of

Just (_,x) -> x
empty :: Stack a -> Bool
empty (Stck s) = case (popAndtopImpl s) of

Just (s’::s,x::a) -> False -- (2)
Nothing -> True

In case of function push, the pattern Stck s brings into scope the type class
StackImpl s a. Thus, we can access specific methods such as pushImpl x s
to push new elements onto the stack. Functions pop and empty require lexically
scoped type annotations at locations (1) and (2). For example, in case of function
pop the call popAndtopImpl s yields a value of type Stack b for some b and
demands the presence of a type class StackImpl s b. Though, the pattern match
Stck s only makes available the type class StackImpl s a. Via the lexically
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scoped annotation x::a, notice that a refers to pop’s annotation, we convince
the type inferencer that a=b. Then, the program is accepted.2

The informed reader will notice that instead of lexically scoped type anno-
tations we could use functional dependencies [12] to enforce that a=b. In our
opinion, for many practical examples the reverse argument applies as well. Fur-
thermore, lexically scoped type annotations are a more light-weight extension
than functional dependencies. Hence, we will ignore functional dependencies for
the purpose of this paper.

What we discover next is that MPTC type inference is not tractable in general.
Loss of Principal Types and Undecidability of Type Inference. Consider
the following (contrived) program.

class Foo a b where foo :: a->b->Int
instance Foo Int b -- (F1)
instance Foo a b => Foo [a] b -- (F2)
data Bar a = forall b. K a b
f (K x y) = foo x y

The surprising observation is that function f can be given the following infinite
set of types

f :: Bar [Int ]n → Int

for any n ≥ 0, where [Int ]n is a list of lists ... of lists (n times) of integers. We
postpone a discussion on why the above types arise to the next section.

The devastating conclusion we draw is that principal types are lost in general.
We even cannot hope for complete and decidable type inference because the set
of maximal types given to a program may be infinite. We say a type is maximal
if there is no other more general type. The above types are all clearly maximal.

Function f makes use of multi-parameter type classes and “pure” existential
types. That is, the type class context of the existential data type definition is
empty. This shows that type inference is already a problem for “simple” ex-
amples. We do not have to resort to “fancy” examples where we constrain the
parameters of constructors by a multi-parameter type class.

The “simple” combination of multi-parameter type classes and type anno-
tations poses the same problems. The following function where we assume the
above instances

g y = let h :: c->Int
h x = foo y x

in h y

has a similar infinite set of types g :: [Int ]n → Int for any n ≥ 0.
It should be intuitively clear that to establish completeness and decidability

of type inference in the MPTC type system we would need to demand an exces-
sive amount of type annotations, something which would seriously impair the
practical usefulness of MPTCs.
2 GHC requires the somewhat redundant pattern annotation pop (Stck s::Stack a)

which we omit here for simplicity.
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Therefore, we seek for a compromise and give up on having both complete-
ness and decidability. As is usual in the Hindley/Milner type system, we sacrifice
completeness for the sake of decidability. For example, some well-typed programs
with polymorphic recursion are rejected because it makes type inference unde-
cidable [8]. Instead, we demand that if type inference succeeds, the inferred type
must be principal.

An incomplete type inference has already been implemented in GHC; for
example it does not produce a type for either f or g. The incompleteness of
the GHC implementation is captured in a number of conditions on programs.
Programs that do not satisfy these conditions are rejected. Unfortunately, there
exists neither a formalization of GHC’s inference, nor a proof that its conditions
guarantee principal types. We will show that the GHC conditions are indeed
sufficient, and we present a formal type inference that computes principal types
under these conditions.

3 MPTC Inference Overview

We investigate in more detail why MPTC inference is so hard. Then, we motivate
our MPTC inference procedure. We postpone a description of the GHC MPTC
conditions to the next section.

3.1 Preliminaries

We introduce some basic assumptions and notation which we will use throughout
the paper.

We often write ō as a short-hand for a sequence of objects o1, ..., on (e.g. types
etc). We write fv(o) to denote the free variables in some object o. We write “−”
to denote set subtraction.

We assume that t refers to types consisting of type variables a, function types
t1 → t2 and user-definable types T t̄. We assume primitive constraints of the
form t1 = t2 (type equations) and TC t̄ (type class constraints).

We generally assume that the reader is familiar with the concepts of substi-
tutions, unifiers, most general unifiers (m.g.u.) etc [15] and first-order logic [23].
We write [t/a] to denote the simultaneous substitution of variables ai by types ti
for i = 1, .., n. We use common notation for Boolean conjunction (∧), implication
(⊃) and universal (∀) and existential quantifiers (∃). Often, we abbreviate ∧ by
“,” and use set notation for conjunctions of formulae. We sometimes use ∃̄V .Fml
as a short-hand for ∃fv(Fml)−V.Fml where Fml is some first-order formula and
V a set of variables, that is existential quantification of all variables in Fml apart
from V . We write |= to denote the model-theoretic entailment relation. When
writing logical statements we often leave (outermost) quantifiers implicit. E.g.,
let Fml1 and Fml2 be two formulae where Fml1 is closed (contains no free vari-
ables). Then, Fml1 |= Fml2 is a short-hand for Fml1 |= ∀fv(Fml2).Fml2 stating
that in any (first-order) model for Fml1 formula ∀fv(Fml2).Fml2 is satisfied.
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3.2 Type Inference Via Implication Constraints

The examples we have seen so far suggest that we need to perform type infer-
ence under “local assumptions.” That is, the assumption constraints resulting
from type annotations and pattern matches over existential types must satisfy
the constraints resulting from the program body. In the case of multiple pattern
clauses, the individual assumptions for each pattern clause do not interact with
the other clauses. Hence, their effect is localized. This is a significant depar-
ture from standard Hindley/Milner inference where we are only concerned with
solving sets of primitive constraints such as type equations and type classes.

Our MPTC type inference method makes use of the richer form of implication
constraints.

Type Classes tc ::= TC t
Context D ::= tc | D ∧D
Constraints C ::= t = t | TC t̄ | C ∧ C
Implication Constraints F ::= C | ∀b̄.(D ⊃ ∃ā.F ) | F ∧ F

Constraints on the left-hand side of the implication symbol ⊃ represent local as-
sumptions arising from constraints in type annotations and data type definitions.
For MPTC programs we can guarantee that only type classes appear on the left-
hand side. Constraints on the right-hand side arise from the actual function body
by generating constraints out of expressions following a standard procedure such
as algorithm W [19]. Universally quantified type variables refer to variables in
type annotations and abstract variables. Recall that abstract variables are intro-
duced by the forall keyword in data type definitions. Existentially quantified
type variables belong to right-hand side constraints.

The example from before

pop :: Stack a -> Stack a
pop (Stck s) = case (popAndtopImpl s) of

Just (s’,x::a) -> Stck s’ -- (1)

gives rise to the implication constraint

∀a.∀s .(StackImpl s a ⊃ ∃tx .(StackImpl s tx ∧ tx = a))

For example, constraint StackImpl s tx arises from the program text
popAndtopImpl s and constraint tx = a arises from x::a. On the other hand,
the constraint StackImpl s a on the left-hand side of ⊃ arises from the pattern
match Stck s. The above implication constraint is clearly a universally true
statement. Hence, we can argue that the type of pop is correct.

If we replace the lexically scoped annotation x::a by x we find the following
variation of the above implication constraint.

∀a.∀s .(StackImpl s a ⊃ ∃tx .StackImpl s tx )

This is also a universally true statement. But verifying this statement is more
difficult. Checking is not enough here, we need to find a solution for tx. The
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problem is that the solving procedure which we outline below will not necessarily
find the answer tx = a. The GHC type inferencer will fail as well.

The crucial observation is that without the annotation x::a, the program is
in fact “ambiguous”, hence, illegal. The type tx of program variable x does not
appear in the type of function pop. Therefore, several solutions for tx may exist
but this choice is not reflected in the type. Haskell type classes follow the open-
world assumption. That is, at some later stage we can add further instances
such as instance StackImpl s Int and thus we find besides tx = a a second
solution tx = Int.

The danger then is that the meaning of programs may become ambiguous.
This is a well-recognized problem [11,24]. For this reason, Haskell demands that
programs must be unambiguous. We therefore follow Haskell and rule out am-
biguous programs. In terms of implication constraints, the unambiguity condition
says that all existentially quantified type variables which do not appear in the
final type must be unique. It is certainly not a coincidence that unambiguity
also prevents us from guessing solutions.

For our specific case, we could argue that the declaration instance StackImpl
s Int itself is illegal because it overlaps with the one from before. Hence, there
should be only one valid solution tx = a. The point is that the unambiguity
check is a conservative check and does not take into account any of the specific
conditions which we impose on instances. Hence, the program without the an-
notation x::a fails not because it does not type check, the program is simply
plain illegal.

Let’s consider the implication constraint for the “devious” program

f (K x y) = foo x y

We find that tf = Bar tx → tr ∧ ∀ty .(Foo tx ty ⊃ tr = Int) where tf , tx and ty
are respectively the types of f, x and y respectively, and tr is the result type.
The implication constraint restricts the set of solutions that can be given to
these variables. The function body demands that tr = Int and the call foo x y
demands Foo tx ty . The universal quantifier ∀ty captures the fact that variable
y is abstract.

In the previous example, we only had to check that the implication constraint
is correct. Here, we actually need to find a solution. The problem becomes now
apparent. The constraint tf = Bar [Int ]n → Int is a solution of the above impli-
cation constraint for any n ≥ 0. More formally,

∀tf .(tf = Bar [Int ]n → Int) ⊃
(∃tr .∃tx .tf = Bar tx → tr ∧ ∀ty .(Foo tx ty ⊃ tr = Int))

is a true statement under the assumption that Foo [Int ]n ty holds for any ty,
which is implied by the above instances (F1) and (F2). Each one of maximal types
f :: Bar [Int ]n → Int corresponds to one of the solutions tf = Bar [Int ]n → Int .

A naive “solution” would be to consider the implication constraint itself as
the solution. Although, we (trivially) obtain complete inference, this approach is
not practical. First, types become unreadable. In the type system, we now admit
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implication constraints (and not only sets of primitive constraints). Second, type
inference becomes intractable. The implication constraints arising from the pro-
gram text may now have implication constraints on the left-hand side of ⊃. But
then solving these “extended” implication constraints is very close to solving of
first-order formulae. Previous work [14] shows that solving of first-order formula
with subtype constraints is decidable but has a non-elementary complexity. Note
that via Haskell type classes we can encode complex relations such as subtyping.
Hence, we abandon this path and consider how to solve implication constraints
in terms of sets of primitive constraints.

3.3 Highlights of MPTC Implication Solver

In its simplest form, we need a solving procedure for implication constraints of
the form D ⊃ C where D consists of sets of type class constraints whereas C
additionally contains Hindley/Milner constraints (i.e. type equations). Before we
attempt solving, let’s consider how to check that D ⊃ C holds. Checking is a
natural first step to achieve solving.

We apply the law that D ⊃ C iff D ↔ D ∧ C. Thus, checking can be turned
into an equivalence test among constraints. The standard method to test for
equivalence is to build the canonical normal forms of D and D ∧ C and check
whether both forms are identical. In case of type equations, we can build canon-
ical normal forms by building most general unifiers. Here, we additionally find
type classes.

The meaning of type classes is specified by instance declarations which effec-
tively define a rewrite relation among constraints. For example, the instance
StackImpl [a] a declaration from Section 2 implies that the StackImpl [a] a
constraint can be rewritten to True. In Haskell speak, this process is known as
context reduction, although, we will use the term constraint rewriting/solving
here. In Section 4.1, we formalize how to derive these rewriting steps from in-
stance declarations. For the moment, let’s assume a rewrite relation �∗ among
constraints where we exhaustively apply instance rules on type classes and
rewrite type equations into most general unifiers.

Based on this assumption, we check D ↔ D ∧ C by executing C �∗ C′ for
some final constraint C′ and testing whether D and C′ are identical. Notice
that we do not rewrite D which is due to the GHC assumption that constraints
D are already in canonical normal form. If D and C′ are identical, the check
succeeds. Otherwise, we need to infer some missing hypotheses, i.e. constraint.
The obvious approach is to take the set difference between C′ and D. Recall that
we can treat a conjunction of primitive constraints as a set. Then, C′ −D is a
solution of D ⊃ C. We have that (C′ −D) ⊃ (D ⊃ C) iff ((C′ −D) ∧D) ⊃ C
iff C′ ⊃ C which clearly holds. To summarize, the main idea behind our solving
procedure is to rewrite constraints to some canonical normal form. We take the
set difference between canonical normal forms to infer the missing assumptions.

To illustrate this solving procedure, we consider a simple example.
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class F a
class B a b where b :: a -> b
instance F a => B a [a]
data T a = F a => Mk a -- (T)
f (Mk x) = b x

In the data type definition (T), F a constrains the type of the constructor Mk.
Function g gives rise to the following implication constraint

tf = T tx → b ∧ (F tx ⊃ B tx b)

This case is slightly more general than above. Constraints tf = T tx → b will
be definitely part of the solution. Solving of (F tx ⊃ B tx b) yields the solution
B tx b. There are no instance rules applicable to B tx b. Hence, the difference
between B tx b and F tx is B tx b. Hence, tf = T tx → b ∧B tx b is a solution.
Hence, f can be given the type ∀tx, b.B tx b ⇒ tx → b.

In general, our solving procedures needs to deal with multiple branches (i.e.
conjunctions of implications). Universally quantified variables refer to type anno-
tations and abstract variables whereas existentially quantified variables refer to
Hindley/Milner constraints. Universal variables are more “problematic” because
they cannot be instantiated and are not allowed to escape. In the following, we
give an informal discussion of how our solving procedure deals with such cases.
The exact details are presented in the upcoming section.

For example, B a b ∧ tr = Int is not a valid solution of

∀b.True ⊃ (B a b ∧ tr = Int)

because the variable b escapes. We will check for escaping of universal vari-
ables by applying a well-known technique known as Skolemization [18]. Skolem-
ization of ∀b.True ⊃ (B a b ∧ tr = Int) yields True ⊃ (B a Sk ∧ tr = Int). The
constraint B a Sk ∧ tr = Int is clearly not a valid solution because of the Skolem
constructor Sk .

We explore solving of multiple branches. The idea is consider one branch at
a time.

class Foo a b where foo::a->b->Int
instance Foo Int b -- (F)
class Bar a b where bar :: b->a->a
data Erk a = forall b. Bar a b => K1 (a,b)

| forall b. K2 (a,b)
g (K1 (a,b)) = bar b a
g (K2 (a,b)) = foo a b

Function g’s program text gives rise to

t = Erk a → t3 ∧ t3 = t1 ∧ t3 = t2∧ (C0)
(Bar a Sk1 ⊃ Bar a Sk1 ∧ t1 = a)∧ (F1)
(True ⊃ Foo a Sk2 ∧ t2 = Int) (F2)
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where each branch corresponds to a pattern clause. Universal quantifiers have
already been replaced by fresh Skolem constructors.

We start solving the first branch F1. Based on our method for solving for
single implications, we find that C0 ∧ t1 = a is a solution for C0 ∧ F1. We make
this solving step explicit by writing

C0 ∧ F1 ∧ F2 � C0 ∧ t1 = a ∧ F2

We will formally define this rewriting relation � among implication constraints
in the upcoming section. Each time we solve a single implication constraint
we replace the implication constraint with its solution. Thus, we incrementally
build up the solution for the entire set of implication constraints. Solving of the
remaining second branch yields the solution C0 ∧ t1 = a ∧ t2 = Int. Hence, we
find that C0∧F1∧F2 �∗ C0∧t1 = a∧t2 = Int. Notice that C0∧t1 = a∧t2 = Int
implies a = Int and therefore we can rewrite Foo a Sk2 to True and thus solve
(F2). We obtain that g has type Erk Int->Int.

If we start solving F2 first, we cannot immediately “fully” solve this impli-
cation constraint. The constraint Foo a Sk2 ∧ t2 = Int is not a valid solution
because of the Skolem constructor. We can only infer, i.e. add, the partial solu-
tion t2 = Int. That is, we make the following progress

C0 ∧ F1 ∧ F2 � C0 ∧ t2 = Int ∧ F1 ∧ F2

If we continue solving F2 we are stuck. No further constraints can be added
at this stage. Our solving method only observes the canonical normal forms of
the constraints involved. Based on this information, we cannot infer the missing
information t1 = a. Hence, we consider solving of F1. We find that C0 ∧ t2 =
Int ∧ F1 ∧ F2 � C0 ∧ t2 = Int ∧ t1 = a ∧ F2. Finally, we can verify that
C0 ∧ t2 = Int ∧ t1 = a ∧ F2 � C0 ∧ t2 = Int ∧ t1 = a.

The point is that it may not be possible to solve a single implication without
solving other implications first. In case we cannot make progress, i.e. no further
constraints can be added, we consider a different branch. In general, a different
solving order may yield a different result. Under the conditions imposed by GHC,
we can verify that we always obtain the same result. The above example satisfies
the GHC conditions and indeed we infer both times the same result.

4 Inferring Principal Types Under the GHC Conditions

In our approach, type inference boils down to solving of implication constraints.
In a first step, we review some material on type class constraint solving, i.e. solv-
ing of sets of primitive constraints. Then, we formalize the MPTC implication
solver. Along the way, we introduce the conditions imposed by GHC sufficient to
verify our main result: The MPTC implication solver computes principal solu-
tions, therefore type inference computes principal types, under the GHC MPTC
Conditions.

For space reasons, we omit the details of how to generate implication con-
straints out of the program text. This is by now a standard exercise. For full
details see the technical report version of this paper [26].
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4.1 Type Class Constraint Solver

In case we only consider multi-parameter type classes (i.e. no existential types
and type annotations are involved), type inference boils down to solving of sets
of primitive constraints. Instance declarations define a rewrite relation among
type class constraints. Hence, the type class constraint solver is parameterized
in terms of these rewrite relations.

Following our earlier work [24], we formally define these rewrite relations in
terms of Constraint Handling Rules (CHRs) [4]. For each declaration

instance D ⇒ TC t̄

we introduce the single-headed CHR rule TC t̄ ⇐⇒ D. In case, the context
D is empty, we generate rule TC t̄ ⇐⇒ True. The set of all such generated
constraint rules is collected in the MPTC program logic P .

Logically, the symbol ⇐⇒ corresponds to Boolean equivalence. Operationally,
we can apply a renamed rule TC t̄ ⇐⇒ D to a set of constraints C if we find
a matching copy TC s̄ ∈ C such that φ(t̄) = s̄ for some substitution φ. Then,
we replace TC s̄ by the right-hand side under the matching substitution φ(D)
More formally, we write C � (C − {TC s̄}) ∪ φ(D) to denote this derivation
step. We write C �∗

P C′ to denote the exhaustive application of all rules in P ,
starting with the initial constraint C and resulting in the final constraint C′. If
the program logic P is fixed by the context, we sometimes also write C �∗ C′.

Here is an example to show some CHRs in action. Under the CHRs

rule StackImpl (Tree a) a <==> Eq a
rule Eq [a] <==> Eq a

we find that StackImpl (Tree[a])[a] � Eq [a] � Eq a.
We repeat the CHR soundness result [4] which states that CHR rule applica-

tions perform equivalence transformations. Recall that P |= F means that any
model M satisfying P (treating ⇐⇒ as Boolean equivalence) also satisfies F .

Lemma 1 (CHR Soundness [4]). Let C �∗
P C′. Then P |= C ↔ ∃̄fv(C).C

′.

We say P is terminating if for each initial constraint we find a final constraint.
We say P is confluent if different derivations starting from the same point can
always be brought together again.

We will demand that CHRs resulting from instances satisfy these properties.
Termination obviously guarantee decidability. Confluence guarantees canonical
normal forms. Otherwise, we may need to back-track and exhaustively explore
all possibilities during solving which may increase the complexity of the solver
significantly.

To guarantee confluence and termination, GHC imposes the following condi-
tions on programs.

Definition 1 (Well-Behaved Instances)

Termination Order: The context of an instance declaration can mention only
type variables, not type constructors, and in each individual class constraint
all the type variables are distinct.
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In an instance declaration instance D ⇒ TC t1 . . . tn, at least one of the
types ti must not be a type variable and fv(D) ⊆ fv(t1, . . . , tn).

Non-Overlapping: The instance declarations must not overlap: For any two
declarations instanceD ⇒ TC t1 . . . tn and instance D′ ⇒ TC t′1 . . . t

′
n

there is no substitution φ such that φ(t1) = φ(t′1),. . . .,φ(tn) = φ(t′n).

From now on we assume that the MPTC program logic satisfies the Well-Behaved
Instances Conditions. They are sufficient, but not necessary3 conditions for the
essential property that the type class constraint solver is terminating and con-
fluent.

4.2 MPTC Implication Solver

Solutions and Normalization. We first apply three normalization steps to
the implication constraints for convenience.

In the first normalization step, we flatten nested implications and pull up
quantifiers, based on the following first-order equivalences: (i) (F1 ⊃ Qa.F2) ↔
Qa.(F1 ⊃ F2) where a �∈ fv(F1) and Q ∈ {∃, ∀}; (ii) (Qa.F1) ∧ (Qb.F2) ↔
Qa, b.(F1 ∧ F2) where a �∈ fv(F2), b �∈ fv(F1) and Q ∈ {∃, ∀}; and (iii) C1 ⊃
(C2 ⊃ C3) ↔ (C1 ∧ C2) ⊃ C3. We exhaustively apply the above identities from
left to right until we reach the pre-normal form

C0 ∧ Q.((D1 ⊃ C1) ∧ . . . ∧ (Dn ⊃ Cn))

where Q is a mixed prefix of the form ∃b0.∀a1.∃b1 . . .∀an.∃bn. Variables in C0

are free. Our goal is to find solutions (in terms of types) to these variables.

Definition 2 (Solutions for Fixed Assumption Constraints). Let P be a
MPTC program logic, F ≡ C0∧Q.((D1 ⊃ C1)∧ . . .∧ (Dn ⊃ Cn)) an implication
constraint and C a constraint. We say that C is a solution of F w.r.t. P iff

1. C,C0 � ... � C,
2. |= Q.(C ∧Di ↔ C′

i) where C,Ci �∗
P C′

i for i = 1, ..., n, and
3. C ∧ Q.(Di ∧ Ci) is satisfiable in P for each i = 1, ..., n.

In such a situation, we say that C satisfies the Fixed Assumption Constraint
Condition.

We say that C is a principal solution iff (i) C is a solution, and (ii) for any
other solution C′ we have that P |= C′ ⊃ ∃̄fv(F ).C.

The first two conditions define solutions in terms of the operational reading
of instances as CHRs. They imply the logical statement P |= C ⊃ F . This
can be verified by straightforward application of the CHR Soundness Lemma.
The reason for defining solutions operationally rather than logically is due to
the type-preserving dictionary-passing translation scheme [6] employed in GHC.
Briefly, assumption constraints D are taken literally and turned into dictionaries.

3 There are other more liberal instance conditions [25] which guarantee the same.
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Primitive: We define F 
∗
P C′ where C �∗

P C′ if F ≡ C.
General: Otherwise F ≡ C0∧ (D ⊃ C)∧F ′. We assume that the most general unifier

of type equations in C0 has been applied to D and C. We execute C0,D, C �∗
P C′

for some C′. We distinguish among the following cases:
Fail: If False ∈ C′ we immediately fail.
Solved: If C′ − (C0 ∧ D) yields the empty set (i.e. C′ and C0 ∧ D are logically

equivalent), we consider D ⊃ C as solved. We define F 
∗
P C′′ if C0 ∧ F ′ 
∗

P

C′′.
Add: Otherwise, we set S to be the subset of all constraints in C′ − (C0 ∧ D)

which do not refer to a Skolem constructor.
(a) In case S is non-empty, we define F 
∗

P C′′ if C0 ∧S ∧ (D ⊃ C)∧F ′ 
∗
P

C′′.
(b) In case S is empty, we pick some (D1 ⊃ C1) ∈ F ′ and define F 
∗

P C′′ if
C0 ∧ (D1 ⊃ C1) ∧ (F ′ − (D1 ⊃ C1)) ∧ (D ⊃ C)
∗

P C′′.
(c) Otherwise, we fail.

Fig. 1. MPTC Implication Solver

Rewriting them would break separate compilation. Hence, in our definition of
solutions we guarantee that assumption constraints are fixed. Interestingly, the
Fixed Assumption Constraint Condition is essential to guarantee principal types
as we will see later.

The last condition demands that for each particular branch the constraints
arising do not contradict each other (i.e. they must be satisfiable). In particular,
we reject thus the always false constraint Int = Bool as a solution. Such solutions
are clearly non-sensical because they solve any implication constraint. In terms of
the GHC translation scheme, unsatisfiable branches represent dead-code, hence,
we can ignore them.

In the second normalization step we eliminate all universally quantified vari-
ables by Skolemization [18]. That is, we transform ∃b̄.∀ā.F into ∃b̄.[Ska(b̄)/ā]F
where Skai ’s are some fresh Skolem constructors. We apply this step repeatedly
on implication constraints in pre-normal form until we reach the Skolemized,
pre-normal form

C0 ∧ ∃b̄.((D′
1 ⊃ C′

1) ∧ . . . ∧ (D′
n ⊃ C′

n))

For solutions C of Skolemized implication constraints, we additionally demand
that no Skolem constructor appears in C.

The Skolemization preserves the set of solutions. It is sufficient to verify this
statement for a single branch.

Lemma 2 (Solution Equivalence). Let P be a MPTC program logic, S a
constraint, Q.(D ⊃ C) a implication constraint and ∃b̄.(D′ ⊃ C′) its Skolemized
form. Then, S is a solution of Q.(D ⊃ C) iff S is a solution of ∃b̄.(D′ ⊃ C′).

In the last normalization step we drop the outermost existential quantifier ∃b̄.
However, the choice of variables b̄ may not be unique. If this is the case we face the
ambiguity problem mentioned in Section 3. Therefore, we only consider unambigu-
ous implication constraints where we can safely drop the existential quantifier.
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We say that C0 ∧ ∃b̄.((D1 ⊃ C1) ∧ ... ∧ (Dn ⊃ Cn)) is unambiguous iff
fv(φ(Di), φ(Ci)) ⊆ fv(φ(C0)) for each i = 1, ..., n where φ is the m.g.u. of type
equations in C0.4 The above says that fixing the variables in C0 will fix the
variables in each branch. Checking for ambiguity is obviously decidable.

Next, we introduce a solving procedure for implication constraints in normal
form, i.e. unambiguous, Skolemized, pre-normal implications constraints of the
form

C0 ∧ (D1 ⊃ C1) ∧ ... ∧ (Dn ⊃ Cn)

Solving Method. We formalize the solving method motivated in Section 3.3.
In Figure 1, we define a solver F �∗

P C for implication constraints F in normal
form w.r.t. the program logic P which, if successful, yields a solution C. The case
Add subcase (b) deals with the situation where we cannot make any further
progress, hence, we switch to a different branch. We assume that if none of the
branches makes progress we reach subcase (c).

We can establish soundness by a straightforward application of the CHR
Soundness and Solution Equivalence Lemma.

Lemma 3 (Soundness of Solving). Let P be a program logic If F �∗
P C for

some C then C is a solution of F .

4.3 Main Result

In addition to the Well-Behaved Instances and the Fixed Assumption Constraint
Conditions, GHC imposes a third condition on programs.

Definition 3 (GHC MPTC Conditions). We say a program satisfies the
GHC MPTC Conditions iff

– Instances are well-behaved (see Definition 1).
– Each implication constraint in normal-form arising out of a program is un-

ambiguous and has a solution which satisfies the Fixed Assumption Con-
straint Conditions (see Definition 2).

– Each data type definition satisfies the Bound Type Class Context Condition.
That is, for any

data T a1 ... am = forall b1,...,bn. D => K t1 ... tl

and each TC t′ ∈ D we have that fv(t′) ∩ fv(b̄) �= ∅.

In fact, GHC 6.4.1 accepts data T a = forall b. F a => Mk a b which breaks
the Bound Type Class Context Condition. However, in GHC such declarations
are interpreted as data F a => T a = forall b. Mk a b. That is, F a needs
to be satisfied when building any value of type T a, but F a will not appear in
a local assumption constraint.

4 We assume that fv(a = Int) = ∅ because a type is bound by the monomorphic type
Int .
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Our main result says:

Theorem 1 (Principal Types for GHC MPTC Programs). If successful,
our solving method computes principal solutions for programs satisfying the GHC
MPTC Conditions.

Before we explain the proof steps necessary to verify the above result, we high-
light the importance of the GHC MPTC Conditions.

The Well-Behaved Instances Conditions are not essential. We could replace
them with alternative conditions as long as we the type class constraint solver
remains confluent and terminating.

GHC imposes the Fixed Assumption Constraint Condition because of
dictionary-passing translation scheme. The next example shows that without
this condition we may infer non-principal types.

class Bar a b c d where bar ::d->c->a->b
class Bar2 a b
class Foo a b d
class Foo2 a
instance Bar2 a b => Bar a b c T2 -- (B)
instance Foo2 a => Foo a b T2 -- (F)
instance Foo2 a => Bar2 a [a] -- (B2)
data T2 = K
data Erk a d = forall c. Foo a c d => Mk a c d
f (Mk a c K) = bar K c a

The program logic P consists of the following rules.
rule Bar a b c T2 <==> Bar2 a b -- (B)
rule Foo a b T2 <==> Foo2 a -- (F)
rule Bar2 a [a] <==> Foo2 a -- (B2)

The program text of f yields the (simplified) implication constraint (Foo a
Sk T2 ⊃ Bar a b Sk T2 ).

Application of our solving method yields the solution Bar2 a b which implies
the type ∀a, b.Bar2 a b ⇒ Erk a T2 → b for f. However, this solution is not
principal. We claim there is another incomparable solution b = [a] which corre-
sponds to the type ∀a.Erk a T2 → [a]. Both solutions (types) are incomparable
and there is no more general solution (type).

We verify that b = [a] is indeed a solution by checking that b = [a] ∧
(Foo a Sk T2 ⊃ Bar a b Sk T2 ) holds w.r.t. P . From the earlier Section 3, we
know that the checking problem b = [a] ∧ (Foo a Sk T2 ⊃ Bar a b Sk T2 ) can
equivalently be phrased as an equivalence testing problem (b = [a]∧Foo a Sk T2 )
↔ (b = [a]∧Foo a Sk T2 ∧Bar a b Sk T2 ). Then, we rewrite the left-hand and
right-hand side and check whether resulting constraints are logically equivalent.

(1) b = [a],Foo a Sk T2
�F b = [a],Foo2 a (∗)

(2) b = [a],Foo a Sk T2 ,Bar a b Sk T2
↔ b = [a],Foo a Sk T2 ,Bar a [a] Sk T2
�B b = [a],Foo a Sk T2 ,Bar2 a [a]
�B2 b = [a],Foo a Sk T2 ,Foo2 a
�F b = [a],Foo2 a
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The final constraints b = [a],Foo2 a are equivalent. Hence, b = [a] is a solution.
However, b = [a] is not a valid solution under the GHC MPTC Conditions. To
obtain the solution b = [a], it is crucial to rewrite the assumption constraint, see
the derivation step (∗). This violates the Fixed Assumption Constraint Condition.

The Bound Type Class Context Condition is essential as well. Here are ex-
cerpts of an example which we have seen earlier in Section 3.3.

data T a = F a => Mk a -- (T)
f (Mk x) = b x

The definition (T) violates the Bound Type Class Context Condition. Variable
a is not bound by the forall quantifier. Our solving procedure infers the type
∀tx, b.B tx b ⇒ T tx → b. But this type is not principal. Function f can also be
given the incomparable type ∀a.T a → [a] and there is no more general type.

We conclude this section by stating the essential result to verify the above
theorem. The crucial observation is that under the GHC MPTC Conditions, the
“incremental” solutions S which we compute in solving step Add are part of
the principal solution (if one exists). Here is the formal result.

Lemma 4 (Principal Progress). Let P be a program logic derived from in-
stance declarations which satisfy the GHC MPTC Conditions. Let (D ⊃ C) be
a implication constraint in normal form such that (a) D �∗ D and (b) each
primitive constraint in D contains at least one Skolem constructor. Let S be a
Skolem-free subset of C′−D where C �∗

P C′ from some C′ and False �∈ C′−D.
If (D ⊃ C) has a principal solution, then S is a subset of this principal solution.

Assumption (a) effectively represents the Fixed Assumption Condition and as-
sumption (b) represents the Bound Type Class Context Condition. The Bound
Type Class Context Condition guarantees that for all implication constraints
(D ⊃ C) in normal form we have that each type class constraint in D contains
at least one Skolem constructor. Implication constraints resulting from type an-
notations always satisfy this property.

In combination with Lemma 3, the above results guarantee that our solving
method makes progress towards a principal solution. Thus, we can verify the
above theorem.

Under the GHC Conditions, we can also verify that the final result is inde-
pendent of the order of solving. Recall that in solver case Add, subcase (b) the
choice which implication (D1 ⊃ C1) to consider next is not fixed. Effectively, the
result below is saying that the implication solver is confluent.

Lemma 5 (Deterministic Progress). Under the GHC MPTC Conditions,
different runs of the MPTC implication solver will yield the same result where
we either report a solution or reach one of the failure states. Every implication
constraint is considered at most twice.

5 Conclusion

We have pointed out subtle problems when performing type inference for multi-
parameter type classes with existential types and type annotations. In general,
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we lose principality and decidability of type inference. Under the GHC MPTC
Conditions, we give a procedure that infers principal types. To the best of our
knowledge, there is no formal description available of the GHC type inference
engine or any of the other systems which we have mentioned. Nevertheless, we
believe that our procedure is fairly close to the actual GHC implementation.
Formalizing the GHC type inference engine based on the principles and methods
introduced in this paper is something which we plan to pursue in the future.

Our main result guarantees that every inferred type is principal. The question
is whether failure of our inference method implies that no principal type exists?

class Foo a b where foo :: a->b
data Bar a = forall b. Foo b a => Mk b
f (Mk x) = foo x

Function f’s program text generates t = Bar a → c ∧ (Foo Sk a ⊃ Foo Sk c).
Our solving method fails (and so does GHC). It almost seems that t = Bar a → a
is a principal solution. Hence, f has the principal type ∀a.Bar a → a. But this is
only true if we assume a “closed” world where the set of instances (here none) are
fixed. Haskell type classes follow the open world assumption. At some later stage,
we may introduce instance Foo b Int. Then, f can be given the incomparable
type Bar a → Int . The point is that the principal types inferred by our MPTC
implication solving method are “stable”. That is, they remain principal if we add
further instances (which must satisfy the GHC MPTC Conditions of course).
Failure of our inference method seems to imply that no stable principal type
exists. This is something which we plan to investigate further.
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16. K. Läufer. Type classes with existential types. Journal of Functional Programming,
6(3):485–517, 1996.
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Abstract. In addition to traditional record and variant types, Objective Caml has
structurally polymorphic types, for objects and polymorphic variants. These types
allow new forms of polymorphic programming, but they have a limitation when
used in combination with modules: there is no way to abstract their polymor-
phism in a signature. Private row types remedy this situation: they are manifest
types whose “row-variable” is left abstract, so that an implementation may in-
stantiate it freely. They have useful applications even in the absence of functors.
Combined with recursive modules, they provide an original solution to the ex-
pression problem.

1 Introduction

Polymorphic objects and variants, as offered by Objective Caml, allow new forms of
polymorphic programming. For instance, a function may take an object as parameter,
and call some of its methods, without knowing its exact type, or even the list of its
methods [1]. Similarly, a list of polymorphic variant values can be used in different
contexts expecting different sets of constructors, as long as the types of constructor
arguments agree, and all constructors present in the list are allowed [2].

These new types are particularly interesting in programming situations where one
gradually extends a type with new methods or constructors. This is typically supported
by classes for objects, but this is also possible with polymorphic variants, thanks to the
dispatch mechanism which was added to pattern matching. This is even possible for
recursive types, but then one has to be careful about making fix-points explicit, so as
to allow extension. A typical example of this style is the expression problem, where
one progressively and simultaneously enriches a small expression language with new
constructs and new operations [3]. This problem is notoriously difficult to solve, and
Objective Caml was, to the best of our knowledge, the first language to do it in a type
safe way, using either polymorphic variants [4] or classes [5].

If we think of these situations as examples of incremental modular programming, we
realize that an essential ML feature does not appear in this picture: functors. This is sur-
prising, as they are supposed to be the main mechanism providing high-level modularity
in ML. There is a simple reason for this situation: it is currently1 impossible to express
structural polymorphism in functors. One may of course specify polymorphic values in
interfaces, but this does not provide for the main feature of functors, namely the ability
to have types in the result of a functor depend on its parameters. To understand this,
let’s see how functor abstraction works.

1 As of Objective Caml 3.08.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 44–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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let add (p1 : float array) (p2 : float array) =

let l1 = Array.length p1 and l2 = Array.length p2 in

Array.init (max l1 l2)

(fun i -> if i < l1 then if i < l2 then p1.(i) +. p2.(i)

else p1.(i) else p2.(i))

This program computes the sum of two polynomials. We might want to abstract the
representation of arrays, to emphasize that this program uses them functionally (arrays
in OCaml are mutable.)

module type Vect = sig

type t

val init : int -> (int -> float) -> t

val length : t -> int

val get : t -> int -> float

end

module Poly (V : Vect) = struct

let add p1 p2 =

let l1 = V.length p1 and l2 = V.length p2 in

V.init (max l1 l2)

(fun i -> if i < l1 then if i < l2 then V.get p1 i +. V.get p2 i

else V.get p1 i else V.get p2 i)

end

We have given the name t to float array, and made it abstract as a parameter. The
type inferred for add is V.t -> V.t -> V.t, which depends on what implementation
of Vect we will pass as parameter to Poly.

What happens now if we want to make explicit that vectors are to be represented as
objects, calling methods inside the functor? Here is a first attempt.

module type OVect = sig

type t = <length: int; get: int -> float>

val init : int -> (int -> float) -> t

end

module OPoly (V : OVect) = struct

let add (p1 : V.t) (p2 : V.t) : V.t =

let l1 = p1#length and l2 = p2#length in

V.init (max l1 l2)

(fun i -> if i < l1 then if i < l2 then p1#get i +. p2#get i

else p1#get i else p2#get i)

end

Type t is an object type. It gives the list of methods in the object, and their types. Meth-
ods are called with the obj#method notation. Objects and their types in OCaml are fully
structural, and they can be seen as polymorphic records[6], extended with explicit struc-
tural subtyping. The code above typechecks correctly, but it doesn’t give us enough poly-
morphism. Since t has a concrete definition in OVect, any module implementing OVect
will have to include exactly the same definition. Structural subtyping allows coercing an
object with more methods to type t, returning it in init or passing it to add, but other
methods become inaccessible. That is, the result of add would still have only methods
length and get. What we would like is to be able to define implementations where t
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has more methods than in OVect, so that we could still access them in the result of add.
Intuitively, this amounts to defining t in OVect as

type t = <length: int; get: int -> float; ..>

where the ellipsis “..” allows extra methods. But free type variables are not allowed
in types definition (think of type t = ’a,) and the “..” in the above type represents
an internal type variable, usually called the row variable, which is free here. The first
solution that comes to mind is to do as we would with normal type variables, and define
an abstract type corresponding to this “..”.

type t_row

type t = <length: int; get: int -> float; t_row>

This requires the ability to name the row variable, which is anonymous in OCaml. We
formalize this idea at the beginning of section 3. We also find that it is only a first step,
as incremental refinement of type definitions would be clumsy, and this formalization
cannot fully handle polymorphic variant types.

A better approach to this problem is to find a middle-ground between abstract types,
which are completely opaque, and concrete types, which cannot be further refined.

One option to introduce such semi-abstract types would be to exploit subtyping: one
might allow defining upper or lower bounds for abstract types. This is the idea behind
F-bounded polymorphism [7], which has been integrated into a number of languages
such as Generic Java [8], Moby [9], or Scala [10]. In particular, Moby and Scala do
have a module system able to express functors, and Scala gives an elegant solution to
the expression problem [11].

In a language offering complete type inference, like Objective Caml does, subtyping
has to be explicit, if we are to keep types simple. This makes the F-bounded polymor-
phism approach impractical, because any use of a value whose type is semi-abstract
would require an explicit coercion. It is more natural to stick with the fully structural
approach inherent to OCaml, simply abstracting extensibility (rather than the whole
type) as if it were a type variable. This means that we actually follow the idea of adding
an abstract t row, but that we will keep it unnamed. Here is our syntax for it.

type t = private <length: int; get: int -> float; ..>

A private row type2 is defined by a structural type, either object or variant, where the
only free type variable is the row variable. Superficially, this looks exactly like the
definition we just rejected as not well-formed. But here the “private” keyword implicitly
binds the row variable as an anonymous abstract type, at the same level as the type
definition. Using this definition in OVect, the functor OPoly now accepts any object
type having at least the methods length and get with proper types.

There have been examples in the past combining classes with functors. Such a com-
bination has been used by the FOC project for instance [12]. But in the absence of
private row types, classes were only used to provide late-binding at the value level, and
classes or object types did not appear in parameters of functors. We will also see that

2 The “private” part of the naming will get clearer in section 2.2. The qualifiers “row” and “struc-
tural” are more or less interchangeable in this paper. The author somehow prefers structural,
but some people seem to find the concept of row easier to grasp.
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private row types, in combination with recursive modules, are even more interesting
for polymorphic variants, as they provide a powerful way to structure programs using
them.

The body of this paper is composed of two sections. The next one presents various
examples using private row types, for functors, privacy, and extensible recursion. Sec-
tion 3 formalizes the definitions, combining structural polymorphism with applicative
functors.

2 Using Private Row Types

In this section we give examples of various uses of private row types, in combination
with other features. All examples were type-checked using Objective Caml 3.09. The
only new syntax compared to previous versions of the language is the “private” key-
word, which indicates a private row type. While some function definitions contain type
annotations, they are only there for demonstrative purposes, and the definitions would
still be typable without them, leading to a more general type —i.e. type inference is still
principal.

2.1 Simple Functors

Private row types are essential in combining functors with structural polymorphism.
A natural application is our introduction example. For definitions prefixed with #, we
show in italic the types inferred, as in an interactive session.

module type OVect = sig

type t = private <length: int; get: int -> float; ..>

val init : int -> (int -> float) -> t

end

# module OPoly (V : OVect) = struct . . . end ;;

module OPoly : functor (V: OVect) -> sig val add : V.t -> V.t -> V.t end

We can develop it more, by adding a map method and using it in a function mul for
external product.

module type OVect2 = sig

type t = private

<length: int; get: int -> float; map: (float -> float) -> t; ..>

val init : int -> (int -> float) -> t

end

# module OPoly2 (V : OVect2) = struct

include OPoly(V)

let mul x (p : V.t) = p#map (fun y -> x *. y)

end ;;

module OPoly2 : functor (V : OVect2) ->

sig

val add : V.t -> V.t -> V.t

val mul : float -> V.t -> V.t

end
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Since we wish to extend OPoly, we include an instance of it. Note how we pass an argu-
ment of type OVect2 to OPoly which expects an OVect. This is accepted as OVect2.t
is an instance of OVect.t.

Another typical case where we need to use functors with objects, is when the func-
tionality we need is already provided as a functor.

module OMap(X : sig type t = private <compare : t -> int; ..> end)

= Map.Make(struct type t = X.t let compare (x:t) y = x#compare y end)

class vector (n : int) (f : int -> float) = object (s : ’s)

val v = Array.init n f

method length = n

method get i = v.(i)

method map f = < v = Array.map f v >

method compare (vec : ’s) = compare v (Array.init vec#length vec#get)

end

module VMap = OMap(struct type t = vector end)

module VPoly = OPoly2(struct type t = vector let init = new vector end)

Here the functor Map.Make from the standard library expects a type t and a function
compare : t -> t -> int. Since t is not allowed any polymorphism, we have to
wrap it in a new functor expecting only one type, which provides this time a method
compare. We define a class vector —which implicitly also defines a type vector for
its objects—, with all the methods required by OMap and OPoly2, so we can pass its
type as parameter to both. Here the type annotations on f and vec are required, as class
definitions may not contain free type variables.

Examples involving polymorphic variants also arise naturally. Consider for instance
a simple property base, such that we may add new types of properties.

type basic = [‘Bool of bool | ‘String of string]

module Props(X : sig type t = private [> basic] end) =

struct

let base : (string,X.t) Hashtbl.t = Hashtbl.create 17

let put_bool k b = Hashtbl.add k (‘Bool b)

let put_str k s = Hashtbl.add k (‘String s)

let to_string (v : X.t) = match v with

‘Bool b -> if b then "true" else "false"

| ‘String s -> s

| _ -> "other" (* required by typing *)

end

The notation [> basic] is an abbreviation for [> ‘Bool of bool | ‘String ofstring].
It means that the actual variant type X.t will have to contain at least the constructors
of basic, and eventually more. The “>” implies the presence of a row variable. This
notation is not new to this proposal, but the “private” keyword is needed to bind the
implicit row variable in a type definition. An interesting consequence of extensibility
is that any pattern-matching on X.t needs to contain a default case, as it may actu-
ally contain more cases than basic. This is similar to Zenger&Odersky’s approach to
extensible datatypes, which also requires defaults [13].

In order to extend this basic property type, we only need to define a new type and
apply the functor.
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# type extended = [basic | ‘Int of int] ;;

type extended = [ ‘Bool of bool | ‘Int of int | ‘String of string ]

# module MyProps = Props(struct type t = extended end) ;;

module MyProps :

sig

val base : (string, extended) Hashtbl.t

val put_bool : string -> bool -> unit

val put_str : string -> string -> unit

val to_string : extended -> string

end

Note that here, extended is a “final” type, not extensible, thus we may write complete
pattern-matchings for it. We may want to use this property to refine the to_string
function. The notation #basic is an abbreviation for the or-pattern collecting all cases
from basic, i.e. (‘Bool _ |‘String _).

# let to_string (v : extended) = match v with

‘Int n -> string_of_int n

| #basic -> MyProps.to_string v ;;

val to_string : extended -> string

The functorial approach is also useful when combining polymorphic variants and
mutable values. It allows to extend the type of a polymorphic variant in a different
compilation unit, which was not possible before. Here is an example which causes a
compile time error.

(* base.ml *)

type basic = [‘Bool of bool | ‘String of string]

let base : (string, [>basic]) Hashtbl.t = Hashtbl.create 17

$ ocamlc -c base.ml

File "base.ml", line 2, characters 41-58:

The type of this expression, (string, _[> basic ]) Hashtbl.t,

contains type variables that cannot be generalized

Since base is not a value, its type cannot be made polymorphic. A final type for it
should be determined in the same compilation unit. Since no such type is given here,
this results in an error. Using the above functor avoids the problem, by delaying the
creation of the hash table to the application of the functor. Note that using a functor
means that any code accessing the property base must be functorized too. This is a
classical downside of doing linking through functor application. As a counter part, this
enhances modularity, allowing to use several property bases in the same program for
instance.

2.2 Relation to Private Types

Since version 3.07, released in 2003, Objective Caml has private types, introduced by
Pierre Weis [14]. Like private row types, private types are intended to appear in signa-
tures, abstracting some behavior of the implementation. To do that, they simply restrict
(non-polymorphic) variants and records, prohibiting the creation of values outside of
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the module where they were defined, while still allowing pattern-matching or field ac-
cess. Contrary to private row types, they do not allow refinement of type definitions.
Their main intent is to allow to enforce invariant properties on concrete types, like it is
possible with abstract datatypes, while avoiding any overhead.

module Relative : sig

type t = private Zero | Pos of int | Neg of int

val inj : int -> t

end = struct

type t = Zero | Pos of int | Neg of int

let inj n = if n=0 then Zero else if n>0 then Pos n else Neg (-n)

end

# open Relative ;;

# let string_of_rel = function

Zero -> "0"

| Pos n -> string_of_int n

| Neg n -> "-" ^ string_of_int n;;

val string_of_rel : rel -> string

# Zero;;

Cannot create values of the private type Relative.t

Interestingly, we can simulate private types with private row types. The kind of vari-
ant refinement used here is opposite to the previous section: we model restrictions on
construction by assuming that some constructors may actually not be there. This gives
us more flexibility than with the original private types, as some constructors may be
declared as present, to make them public.

module Relative : sig

type t = private [< ‘Zero | ‘Pos of int | ‘Neg of int > ‘Zero]

val inj : int -> t

end = struct

type t = [‘Zero | ‘Pos of int | ‘Neg of int]

let inj n = if n=0 then ‘Zero else if n>0 then ‘Pos n else ‘Neg (-n)

end

# let zero : Relative.t = ‘Zero;;

val zero : Relative.t = ‘Zero

# let one : Relative.t = ‘Pos (-1);;

This expression has type [> ‘Pos of int ] but is here used with type

Relative.t

The private definition of t has one public constructor, ‘Zero, as implied by the “>
‘Zero” bit of the definition, which says that it must be present in the implementation,
but ‘Pos and ‘Neg are allowed to be absent, so they are private. As a result, ‘Zero can
be given type Relative.t, but ‘Pos(-1) cannot, which protects abstraction.

Private record types can be modeled by object types, this time in the usual way. As
an extra feature we naturally gain the possibility of hiding some fields. This allows to
define module-private (or friend) methods, like in Java, while OCaml only has object-
private methods.
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module Vector : sig

type ’a c = private

< length: int; get: int -> ’a; compare: ’a c -> int; .. >

val init : int -> (int -> ’a) -> ’a c

val map : (’a -> ’b) -> ’a c -> ’b c

end = struct

class [’a] c v = object (s : ’s)

method v = v

method length = Array.length v

method get i : ’a = v.(i)

method compare (vec : ’s) = compare v vec#v

end

let init n f = new c (Array.init n f)

let map f v = new c (Array.map f v#v)

end

Here we have used a private object type to hide the method v, while enforcing its pres-
ence in the actual object. This allows accessing the contents of the object in a more
efficient way. If v were visible outside of Vector, encapsulation would be broken, as
one could use it to mutate these contents.

One might think that it would be enough to use an abstract type for the array returned
by v, without hiding v itself. However, object typing in OCaml is purely structural: one
can freely create an object by hand, and give it the same type as an existing class, even
though its methods might cunningly call methods from different objects, breaking the
coherence of the definitions. Only private object types can protect against this, while
still allowing the programmer to call methods in a natural way. As with private types,
this allows to enforce invariants, for instance saying that for a value v of type Vector.c,
calling v#get i always succeeds when 0 ≤ i < v#length.

Note that private object types do not interact directly with classes, and as such they
are not as expressive as abstract views for instance [15]. In particular one cannot inherit
from a private type.

2.3 Recursion and the Expression Problem

Examples in previous sections have kept to a simple structure. In particular, the variant
types involved were not recursive. As we indicated in introduction, polymorphic vari-
ants are known to provide a very simple solution to the expression problem, allowing
one to extend a recursive type with new constructors, with full type safety, and with-
out any recompilation. However, the original solution has a small drawback: one has to
close the recursion individually for each operation defined on the datatype. Moreover it
relies quite heavily on type inference to produce polymorphic types.

With the introduction of recursive modules, a natural way to make things more ex-
plicit is to close the recursion at the module level. However, this also requires pri-
vate row types, to allow extension without introducing mind-boggling coercions (see
mixmod.ml at [4] for an example with coercions.)

We present here a variation on the expression problem, where we insist only on the
addition of new constructors, since adding new operations is trivial in this setting. If
you find it difficult to follow our approach, reading [4] first should help a lot. We first
define a module type describing the operations involved.
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module type Ops = sig

type expr

val eval : expr -> expr

val show : expr -> string

end

We then define a first language, with only integer constants and addition. To keep it
extensible, we leave the recursion open in the variant type, and have operations recurse
through the parameter of a functor.

module Plus = struct

type ’a expr0 = [‘Num of int | ‘Plus of ’a * ’a]

module F(X : Ops with type expr = private [> ’a expr0] as ’a) =

struct

type expr = X.expr expr0

let eval : expr -> X.expr = function

‘Num _ as e -> e

| ‘Plus(e1,e2) -> match X.eval e1, X.eval e2 with

‘Num m, ‘Num n -> ‘Num(m+n)

| e12 -> ‘Plus e12

let show : expr -> string = function

‘Num n -> string_of_int n

| ‘Plus(e1,e2) -> "("^X.show e1^"+"^X.show e2^")"

end

module rec L : (Ops with type expr = L.expr expr0) = F(L)

end

Observe how closing the recursion is now easy: we just have to take a fix-point of the
functor.

The next step is to define a second language, adding multiplication. Inside the func-
tor, we instantiate the original addition language, and use it to delegate known cases in
operations, using variant dispatch.

module Mult = struct

type ’a expr0 = [’a Plus.expr0 | ‘Mult of ’a * ’a]

module F(X : Ops with type expr = private [> ’a expr0] as ’a) =

struct

type expr = X.expr expr0

module L = Plus.F(X)

let eval : expr -> X.expr = function

#L.expr as e -> L.eval e

| ‘Mult(e1,e2) -> match X.eval e1, X.eval e2 with

‘Num m, ‘Num n -> ‘Num(m*n)

| e12 -> ‘Mult e12

let show : expr -> string = function

#L.expr as e -> L.show e

| ‘Mult(e1,e2) -> "("^X.show e1^"*"^X.show e2^")"

end

module rec L : (Ops with type expr = L.expr expr0) = F(L)

end

That’s it. Here is a simple example using the final language.



Private Row Types: Abstracting the Unnamed 53

# Mult.L.show(‘Plus(‘Num 2,‘Mult(‘Num 3,‘Num 5)));;

- : string = "(2+(3*5))"

This whole approach may seem verbose at first, but a large part of it appears to be
boilerplate. Half of the lines of Plus have to be repeated in Mult, and would actually be
in any similar code. From a more theoretical point of view, this example makes clearer
the relation between solutions to the expression problem that use type abstraction, such
as [11], and our original solution which used only polymorphism.

Combining object types with recursive modules also has applications, but they are
less immediate, as classes already provide a form of open recursion.

3 Formalization

Before giving a complete formalization, we first describe a much simpler one, which is
limited to private object types. The idea is to formalize objects as rows, in the style of
Rémy [16]. Here are our core types.

ν ::= α | t(�τ�ρ) abstractions
τ ::= ν | τ → τ | 〈ρ〉 types
ρ ::= ν | /0 | l : τ;ρ rows
k ::= 	 | � kinds
σ ::= τ | ∀α:k.σ polytypes

Types are composed of abstractions, function types, and object types. An object type is
described by a row, which is a list of pairs label-type, terminated either by the empty list
or an abstraction. Abstractions are either type variables or abstract types (which may
have parameters, types or rows.) In order to indicate the contexts where an abstraction
may be used, we introduce two kinds: 	 for types and � for rows. We allow fields to
commute in rows, that is

l1 : τ1; l2 : τ2;ρ = l2 : τ2; l1 : τ1;ρ if l1 �= l2

The same label may occur twice in a row (as for labeled arguments [17].) This simplifies
kinds —they don’t need to track which labels are used—, but this has no practical
impact, as there is no way to create such an object.

If we start with this core type system, moving to the module level is trivial: we
just need to add kinds to abstract types. This creates no difficulty, as Leroy’s modular
module system already handles simple kinds [18]. In such a system, the signature OVect
would be:

module type OVect = sig

type t_row : �
type t : 	 = <length: int; get: int → float; t_row>

val init : int → (int → float) → t

end

Then defining a particular instance just requires providing a concrete definition for
t_row.
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Unfortunately, type refinement in this system proves to be very clumsy. The trouble
is that the natural encoding of OVect2 would not be an instance of OVect. We need
extra type definitions to make it possible.

module type OVect2 = sig

type t_row’ : �
type t_row : � = map : (float → float) → t; t_row’

type t : 	 = <length: int; get: int → float; t_row>

val init : int → (int → float) → t

end

The fact one has to change the name of the abstract row is particularly confusing.
This clumsiness leads to our implicit syntax for private row types: rather than make

abstract rows explicit, and have them pollute signatures, we prefer to leave them im-
plicit, just indicating their presence. Implementations do not need to give a concrete
definition for abstract rows, as the type system can recover them by comparing a pri-
vate type definition and its implementation. Technically this amounts to an extension of
the subtyping relation for modules. And as we keep rows implicit, we can omit kinds
from the surface language.

We might have gone even further, and allowed any free variable to be automatically
converted into an anonymous abstract type. We refrained from this for two reasons. This
contradicts the principle of minimality in language changes, and this doesn’t fit well the
intuition of “private” type. Yet this might be an interesting choice when designing a
more implicit type system for modules.

While this sketch of a formalization gives a good intuition of what private row types
are, sufficient for practical uses, we will use a different formalization for our core lan-
guage. The main reason is that this system does not extend nicely to private variant
types. As can be seen in Rémy’s paper, allowing variant tags to disappear from a type
require additional presence variables. If we were to apply this scheme, we would need
an abstract presence type for each constructor we want to keep private, adding a lot of
complexity3.

We provide in the rest of this section a condensed description of the formal sys-
tem underlying private row types. It is based on our formalism for structural polymor-
phism [19] for the core language part, combined with Leroy’s description of an ap-
plicative functor calculus [20]. A combination of these two systems already provides a
complete description of Objective Caml’s type system (without polymorphic methods,
labeled parameters, and extensions.)

We will not give full details of these two systems, as both of them are rather complex,
yet very few changes are needed. One is the ability to specify inside structural types
that they have an identity (a name), and are only compatible with types having the same
identity. The other is to allow refining private row types through module subtyping, and
check that all such refinements are legal.

While we will still internally use an abstract type to represent a “virtual” row vari-
able, the formalism we describe here does not have explicit row variables. It is rather

3 The internal representation of polymorphic variant types in the Objective Caml compiler does
use such presence variables, but they are not shown to the programmer, and they are not ab-
stracted individually.
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τ ::= α type variable
| t(�τ) abstract type
| τ → τ function type

K ::= /0 | K,α :: (C,R) kinding environment
θ ::= τ | K
τ kinded type
σ ::= θ | ∀�α.θ polytype

Fig. 1. Types and kindings

<l1 : τ1; . . . ; ln : τn; ..>
def= α :: (o,{l1, ..., ln},L ,0,{l1 �→ τ1, . . . , ln �→ τn})
α

<l1 : τ1; . . . ; ln : τn>
def= α :: (o,{l1, ..., ln},{l1, ..., ln},0,{l1 �→ τ1, . . . , ln �→ τn})
α

[> l1 of τ1 | . . . | ln of τn]
def= α :: (v,{l1, ..., ln},L ,0,{l1 �→ τ1, . . . , ln �→ τn)})
α

[< l1 of τ1 | . . . | ln of τn > l1 . . . lk]
def=

α :: (v,{l1, ..., lk},{l1, ..., ln},0,{l1 �→ τ1, . . . , ln �→ τn})
α

Fig. 2. Kindings corresponding to surface syntax

based on an expressive kinding relation [6], which describes constraints on types rather
than simply categories.

3.1 Core Type System

We will directly use the formalism from [19], as it is already general enough. We only
have to add parameterized abstract types. This section may seem obscure without a good
understanding of the formalism used, yet understanding figure 2 and the entailment
relation should be sufficient to go on to the module level. An important point is that the
definitions here ensure automatically subject reduction (leading to type soundness) and
principal type inference, without need of extra proofs.

The syntax for types and kindings is given in figure 1. Simple types τ are defined as
usual. They include type variables, function types, and named abstract types with type
parameters. Polytypes σ are extended with a kinding environment K that restricts possi-
ble instances for constrained variables. K is a set of bindings α :: (C,R), C a constraint
and R a set of relations from labels to types, describing together the possible values
admitted for the type α. There is no specific syntax in types for object and variants, as
they are denoted by type variables constrained in a kinding environment. The kindings
corresponding to the syntax used in previous sections, using the constraint domain de-
fined lower, are given in figure 2, respectively for open or closed, object and variant
types. The only relation we use in kindings, �→, is not a function: a label may be related
to several types. Recursive types can be defined using a mutually recursive kinding en-
vironment, i.e. where kinds are related to each other. It should be clear by now that the
notion of kind in this type system bears no resemblance to the simple kinds we con-
sidered first. Note that we only introduce abstract types here; type abbreviations can be
seen as always expanded.

In order to have a proper type system, we only need to define a constraint domain.
Our constraint domain includes both object and variant types, and support for identi-
fying a type by its name. We assume a set L of labels, denoting methods or variant
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constructors. L includes a special label row used to encode our virtual row. The C in a
kind is an element of the following set.

(k,L,U, p) ∈ {o,v}×Pfin(L)× (Pfin(L)∪{L})×{0,1}

k distinguishes objects and variants. L represents a lower bound on available methods or
constructors (required or present ones), and should be a finite subset of L . U represents
an upper bound, and should be either a finite subset of L , or L itself. p is 0 for normal
types, 1 for private types, and will be used at the module level. For both of objects and
variants, we obtain a “final” (non-refinable) type by choosing L = U .

We define an entailment relation on constraints, noted “C |= C′”, which is reflexive
and transitive. We first distinguish inconsistent constraints.

(o,L,U, p) |= ⊥ if U �= L and U �= L
(v,L,U, p) |= ⊥ if L �⊂U

An object type can only be extensible or final: its upper bound is either L or all labels.
On the other hand, a variant type with a finite upper bound may still be refined by
removing tags, so that the only restriction is that the lower bound should be included in
the upper bound.

Entailment can refine a constraint as long as it is not private. Note that refinement
goes backward: a variable with the kind on the right of the entailment relation can be
instantiated to one with the kind on the left.

(k,L′,U ′, p) |= (k,L,U,0) if L ⊂ L′ and U ⊃U ′

Next we use our constraints to selectively propagate type equalities. For a constraint
C = (k,L,U, p) and a label l:

C � uniq(l) def= k = o∨ l ∈ L∨ (p = 1∧ l ∈U)∨ l = row
l �→ α1 ∧ l �→ α2 ∧uniq(l) ⇒ α1 = α2.

The first line defines a predicate uniq, denoting when only one type can be associated
to a label. The second line is a propagation rule. It means that, for a kind (C,R), when
a label satisfies the property uniq, then types associated to this label in R should be
unified. In the original system without private rows, the definition of uniq was k =
o∨ l ∈ L, meaning that unification is triggered either if we consider an object type,
or a required label in a variant type. Now it is also triggered for possible labels in
private variant types. That is, all possible labels in private types must have unique types.
Combined with that fact their constraint cannot be further refined, this ensures that no
typing information will be added to them. The special label row is always unique, and
will be associated to an abstract type denoting the identity of a private row type.

It is easy to see that these definitions satisfy the conditions for a valid constraint
domain, as stated in [19].

Note that this extension of the core type system is also required in order to handle
first-class polymorphism, available through polymorphic methods and record fields. In
that case, row is only associated with a universal type variable.
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3.2 Module Type System

The second part is at the module level: we must introduce private type definitions, and
allow refinement through module subtyping. In order to formalize this, we will switch
to Leroy’s module calculus [20], which has 4 kinds of judgements: well-formedness
(E � σ type), module typing (E � s : S), type equivalence (E � θ ∼∼ θ′), and module
subtyping (E � S <: S′.) We will proceed by adding and modifying rules in this calculus,
without reproducing all rules for the sake of space.

Leroy leaves the base language unspecified. We have to be more specific, in partic-
ular allowing parameterized type definitions. We will see manifest type definitions as
kinded types: type ti(�α) = K 
 τ. Note that while variables of refinable kinds must all
appear in�α, as there is no way to quantify a variable explicitly outside of the type defi-
nition, variables whose kind is no longer refinable, i.e. either L = U or p = 1, are seen
as implicitly quantified, and may appear in K but not in �α. “E � σ type” checks that σ
is a valid polytype under environment E , and that no refinable type variable is free.

The basic typing rule for type definitions is unchanged, up to our addition of type
parameters.

E � ∀�α.θ type ti �∈ BV (E) E;type ti(�α) = θ � s : S
E � (type ti(�α) = θ;s) : (type ti(�α) = θ;S)

As it does not handle directly private row types, we first need to translate private
definitions into normal ones, both inside modules and signatures. As we have explained
before, we do it by defining an abstract type trow along with the manifest type t, using it
as row.

type ti(�α) = private θ0
�= type trowi(�α);type ti(�α) = θ

where
θ0 = K,β :: (k,L,U,0,R)
β L �= U
θ = K,β :: (k,L,U,1,R∪{row �→ trowi(�α))})
β

θ0 is a row type, with a single non-quantified refinable type variable β. In θ, we make
its kind private, and mark it with the abstract type trowi, which is defined along ti.

Once we have introduced private row types, we should allow refinement through
subtyping. However, the standard approach of having trowi manifest on one side, and
abstract on the other, will not work here, as we want to allow the enclosing kinds to be
different. Here is the original rule for subtyping.

E � θ ∼∼ θ′

E � (type ti(�α) = θ) <: (type ti(�α) = θ′)

As you can see, the trouble here is that this rule is limited to equivalent type represen-
tations. In order to accommodate refinement, we add a new rule, using entailment.

(k,L,U,0) |= (k,L′,U ′,0) E � K ∼∼ K′ row �→ trowi(�α) ∈ R′

(∀l) l �→ τ ∈ R∧ l �→ τ′ ∈ R′ ⇒ E � τ ∼∼ τ′
E � (type ti(�α) = K,β :: (k,L,U, p,R)
β)

<: (type ti(�α) = K′,β :: (k,L′,U ′,1,R′)
β)

This rule says that, a row type definition (either private or not) subsumes a private row
type definition when: (1) the original definition entails the private one (both assumed



58 J. Garrigue

public), (2) kinding environments K and K′ are identical, up to the equivalence of the
types they contain, (3) all labels common to both definitions are associated to equivalent
types, which also implies that if row �→ τ ∈ R, then E � τ ∼∼ trowi(�α). The requirement
row �→ trowi(�α) ∈ R′ additionally ensures that the abstract row is declared inside the
same signature.

Another slight modification we need is to allow the introduction of hidden types
in subtyping. This accounts for two situations. The first one is when the original type
definition is public, and we make it private through subtyping. We need to introduce a
new abstract trowi in the subtype, matching the implicit one in the supertype.

trowi �∈ BV (Di) (1 ≤ i ≤ n)
E � sig D1; ...;Dn end<: sig D1; ...;Dk;type trowi(�α);Dk+1; ...;Dn end

The second one occurs when we define a type alias for a private type, and then export
it as being itself a private type. Here is an example.

module M : sig type t = private [> ‘A] end = struct

module M1 = struct type t = private [> ‘A | ‘B] end

type t = M1.t

end

We need to add type trowi = M1.trowi in the signature of our implementation, in order
to use the subtyping rule for private row types:

trowi �∈ BV(Di) Dk = (type ti(�α) = K,β :: (k,L,U,1,R)
β) row �→ τ ∈ R
E � sig D1; ...;Dk;S end<: sig D1; ...;Dk−1;type trowi(�α) = τ;Dk;S end

These rules together provide a complete formalization of private row types.

3.3 Extra Features

Independently of these questions of formalism, another issue appears with the introduc-
tion of the with construct for signatures. This construct is not present in [20], but it is
needed in practice for any implementation, to avoid expanding all signatures by hand.
We are using it in our own example of section 2.3. The technical difficulty with with
comes from the fact it only substitutes one definition at a time, and the environment of
the signature to be modified is not available in the new definition. It had to be extended
to allow private row types, particularly recursive ones. This is not yet enough for mutu-
ally recursive types, and it seems that there are approaches more promising than with
to manipulate signatures [21].

A last design decision is related to the handling of variance. In order to allow more
subtyping, in OCaml both abstract types and algebraic datatypes have variances asso-
ciated to their type parameters. For instance the type list(α) is covariant, which can
be written type list(+α) in its type definition. For abstract types variance annota-
tions are explicit, but for algebraic datatypes they are inferred from the definition of
the type. As private row types have a structural definition, one might think of inferring
their variance. However, the presence of an associated abstract type clearly indicates
that variance should be explicit. This also means that this variance must be respected:
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i.e. an implementation should have a stronger variance than the private row type it re-
places, and variance can only be weakened through subtyping. This reasoning can be
used to explain why private types, while they do not allow refinement, use also explicit
variances.

4 Conclusion

We have introduced a new form of type definition, which is both manifest and abstract
at the same time. We branded it as private, as it behaves in a way very similar to both
private types in OCaml, and private methods as they are understood in Java. Nonethe-
less, the power of this new feature is not limited to privacy, but goes a long way towards
abstraction allowing incremental extension. As this feature relies heavily on the expres-
sive power of modules, it is most interesting when combined with recent extensions of
module systems, such as recursive modules [22,23,24] or, in an hopefully close future,
combinable signatures [21].

Another desirable addition is support for unions of private variant types. One can
already define unions of concrete polymorphic variant types, and use them through
dispatch. The private case is more complex, as one must ensure that the combined types
are compatible. We are currently working on this question.

Acknowledgements
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12. Boulmé, S., Hardin, T., Rioboo, R.: Polymorphic data types, objects, modules and functors:
is it too much? RR 014, LIP6, Université Paris 6 (2000)
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Abstract. We present a type and effect system for a multi-staged lan-
guage with exceptions. The proposed type and effect system checks if we
safely synthesize complex controls with exceptions in multi-staged pro-
gramming. The proposed exception constructs in multi-staged program-
ming has no artificial restriction. Exception-raise and -handle expressions
can appear in expressions of any stage, though they are executed only
at stage 0. Exceptions can be raised during code composition and may
escape before they are handled. Our effect type system support such fea-
tures. We prove our type and effect system sound: empty effect means
the input program has no uncaught exceptions during its execution.

1 Introduction

Staged computation, which explicitly divides a computation into separate stages,
is a unifying framework for existing program generation systems: partial
evaluation [5,1], run-time code generation [7,10], function inlining and macro
expansion [11,3] are all instances of staged computation. The stage levels are
determined by the nesting depth of program generations: stage 0 generates a
program of stage 1 that generates a program of stage 2, and so on. The key as-
pect of multi-staged language is to have code templates (program fragments) as
first-class objects. Code templates are freely passed, composed with code of other
stages, and executed. At stage 0, computation include all normal computation
plus generating code and executing generated code. At stage > 0, computation is
just code-composition: it just visits expression’s sub-expressions and substitutes
code into code when appropriate.

Example 1. As a specializer example in multi-stage programming, consider a
recursive map function:

fun map f nil = nil

| map f (x::r) = (f x) :: (map f r)
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The map function applies function f to each element in the input list, and builds
a list with the results returned by f. If we know which list is available, we
can specialize map function with the input list. For example, if input list is
1::2::nil, we specialize the map function to fn f => (f 1)::(f 2):::nil.
The specialized function is more efficient than the original map function because
it does not need to traverse the list structure. This specialization can be achieved
by the following two functions in Lisp’s quasi-quote syntax [11]:

fun map ls nil = ‘nil

| map ls (x::r) = ‘((f ,x) :: ,(map ls r))

fun smap ls = eval ‘(fn f => ,(map ls ls))

At stage 0, the function smap, along with map ls, traverses input list ls and
generates a specialized function of stage 1: the stage increases by the number
of surrounding backquotes (‘), and decreases by the number of commas (,).
Because the application (f ,x) in map ls is at stage 1 (surrounded by one
backquote), it will not be evaluated. However, the recursive call (map ls r) will
be evaluated because it is at stage 0 (surrounded by one backquote and one
comma). �

Exception handling allows the programmer to define, raise and handle excep-
tional conditions. Exceptional conditions are brought (by a raise expression) to
the attention of another expression where the raised exceptions may be handled.
Raised exceptions abort the usual program continuation, transfer (“long jump”)
the control to its handling point, and continue there with the handler expres-
sion. Hence by using exceptions programmers can divert any control structure
to a point where the corresponding exception is handled. The exception facili-
ties, however, can provide a hole for program safety. Programs can abruptly halt
when an exception is raised and never handled.

In this paper we extend the Lisp-like multi-staged language λsim
open [6] with

such exceptions and then present a sound type and effect system that statically
estimate may-uncaught exceptions in the input programs.

The proposed exception facility in the multi-staged language has no artificial
restriction. Lexically, exception-raise and -handle expressions can appear in ex-
pressions of any stage. Only restriction, which is natural, is on their dynamics:
exceptions must be raised and handled only at stage 0 (at normal computation).
Hence, the most interesting feature of our language is exceptions raised during
code composition. During computation at stage > 0 (during code composition)
an expression can be brought to stage 0 and evaluated there to return a code
to substitute for the expression at the code composition. During this stage-0
evaluation an exception can be raised. This raised exception can be caught by
a handler only at stage 0. Which handler is that? Any handler at stage 0 in
the continuation of the raised exception. A handler that is installed during the
stage-0 evaluation can catch it. Or, a handler that is installed at stage 0 before
the code composition can catch it and continue.

Example 2. We explain this staged exception semantics by an example. The
following function f gets a list ls and generates a code that multiplies free
variable a with every element in ls.
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fun g nil = ‘1

| g x::r = ‘(,x * ,(g r))

fun f ls = ‘(a * ,(g ls))

When the input list ls is ‘2::‘0::‘3::nil, the result code will be ‘(a * 2
* 0 * 3 * 1). We can prepare a more efficient code by using exceptions. We
change g to raise Zero whenever an element of ls is ‘0.

fun g1 nil = ‘1

| g1 x::r = if x = ‘0 then raise Zero

else ‘(,x * ,(g1 r))

Then, to catch the raised exception Zero, we can install a handler during the
stage-0 evaluation inside the code composition:

fun f1 ls = ‘(a * ,((g1 ls) handle Zero => ‘0))

Or, we can install a handler at stage 0 before the code composition:

fun f2 ls = ‘(a * ,(g1 ls)) handle Zero => ‘0

Note that f1 and f2 behave differently. When the input ls has ‘0, f1 generates
‘(a * 0) while f2 generates ‘0. �

We extend the effect type system [12,13,14] for exception analysis of ML [4,9]
to have staged effect types. The extension consists of annotating the box type
constructor � for the code type with the set of possible exceptions that may
be raised during the code execution. Every exception effect has an associated
non-negative integer that denotes the number of stages that the raised exception
must escape to be handled at stage 0. For example, Zeron in an effect means
that uncaught exception Zero can be handled at stage 0 after escaping n stages.

The type of a code with raise c (c for an exception name) would be:

‘(raise c) : �(∅ � A, {c0}), ∅.

The box type �(∅ � A, {c0}) means that the above expression is a closed code
of type A, and may raise an exception c when evaluated. The empty effect ∅
means that this code does not raise any exception. The type of executing the
above code template by eval would be:

eval ‘(raise c) : A, {c0}.

The effect {c0} means that the above expression may raise exception c. The
superscript 0 means that the raised exception c can be handled by a proper
handler at the current stage.

Example 3. We will explain such exceptions and their corresponding types by
an example program in Fig. 1. The function codegen compiles a program in
language L into an ML program of int type. During compilation, it may raise
an exception CompileError. The type of codegen would be:

codegen : L
{CompileError0}→ �(∅ � int), ∅.
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exception CompileError

type L = CONST of int | PLUS of L * L | · · ·

fun codegen e =

case e of

CONST x => ‘,x

| PLUS(e1,e2) => ‘(,(codegen e1) + ,(codegen e2))

· · ·
| => raise CompileError

fun compile program =

(codegen (parse program))

handle CompileError => print "Compile Error"; ‘0

Fig. 1. An example: compiling L into ML

It means that exception CompileError may be raised when we apply codegen.
Hence, the type of application (codegen e1) is:

(codegen e1) : �(∅ � int, ∅), {CompileError0}.

In order to plug the above code inside another code (i.e., inside a backquote ex-
pression), we have to comma it: ‘(,(codegen e1)). The type of ,(codegen e1)
is:

,(codegen e1) : int, {CompileError1}.
Because this expression is inside a code template (stage 1), the raised excep-
tion CompileError cannot be handled at the current stage: it can be handled
only after escaping 1 stage. The superscript 1 in CompileError1 describes this
situation. The type of the enclosing code template of the above expression is:

‘(,(codegen e1)) : �(∅ � int, ∅), {CompileError0}.

It means that the above expression may raise exception CompileError. The
superscript 0 in CompileError0 means that CompileError can be handled at
the current stage. Hence a handler at stage 0 can catch it

‘(,(codegen e1))
handle CompileError => ‘0

: �(∅ � int, ∅), ∅

while a handler inside code template (at stage > 0) cannot handle it

‘(,(codegen e1)
handle CompileError => 0)

: �(∅ � int, ∅), {CompileError0}
�

Recently, Nanevski has proposed an exception type for staged language in a dif-
ferent formulation [8]: his language requires programmer to explicitly name each
code composition, while our type system (in an implicit style) allows unnamed
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code composition1. Though explicitly naming code composition may make type
system simple (such that it is not necessary to annotate effects with stage levels),
we chose to use the implicit style. Our reason is pragmatic: to have an exception
type system to support Lisp’s quasi-quote system. Lisp’s quasi-quote system is
an implicit multi-staged language that has evolved to comply with the demands
from multi-staged programming practices. Moreover, our type system enjoys the
advantage of [6] that supports open code as first-class objects.

In the rest of our paper, we introduce the syntax and semantics of our lan-
guage (Section 2), define the exception types and effects (Section 3.1), describe
typing rules (Section 3.2), and prove the soundness of our effect type system
(Section 3.3).

2 Language

2.1 Syntax

Our language λstage
exn has the staging constructs á la λsim

open [6] with the exception-
raise and -handle constructs. We exclude references and gensyms from λsim

open in
order to focus on exceptions.

e ∈ Exp ::= i | c | x | λx.e | e1e2

| box e | eval e | unboxk e
| raise e | handle e1 c e2

Expression i is an integer constant, c is an exception name. Expression box e,
unboxk e (k > 0), and eval e are for manipulating code templates that respec-
tively correspond to the backquote(‘), the comma(,) ........ k stages, and the
eval in Lisp’s quasi-quote notation. At stage 0, raise e raises an exception re-
turned from evaluating e. Handle expression handle e1 c e2 evaluates e1 first. If
it does not raise an exception, its result is the handle expression’s result. If it
raises exception c, then the handler catches it and evaluates e2. If it raises an
exception other than c, then the raised exception is the result.

2.2 Operational Semantics

Fig. 2 shows a big-step operational semantics of our language λstage
exn . Evaluation

e
n−→ r

denotes that expression e is evaluated to result r at stage n.
Values V n are the values of stage n. In multi-staged languages, values exists

at every stage. Values at stage 0 are normal ones plus code. Values at stages> 0
are code only. A staged value vn (n > 0) is an expression that is to be evaluated
later when it is demoted to stage 0 by the eval construct. Results Rn at stage
1 Davies and Pfenning have shown that both explicit and implicit formulations are

inter-translatable [2].
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Normal computations (at stage 0) and Propagation of
code compositions (at stage n > 0) raised exceptions

(EINT) i
n−→ i (n ≥ 0)

(EEXN) c
n−→ c (n ≥ 0)

(EVAR) x
n−→ x (n > 0)

(EABS) λx.e
0−→ λx.e

e
n−→ v

λx.e
n−→ λx.v

(n > 0)
e

n−→ c

λx.e
n−→ c

(n > 0)

(EAPP)
e1

0−→ λx.e e2
0−→ v2 [x

0�→ v2]e
0−→ v

e1 e2
0−→ v

e1
n−→ c

e1 e2
n−→ c

(n ≥ 0)

e1
n−→ v1 e2

n−→ v2

e1 e2
n−→ v1 v2

(n > 0)
e2

n−→ c

e1 e2
n−→ c

(n ≥ 0)

(EBOX)
e

n+1−→ v

box e
n−→ box v

(n ≥ 0)
e

n+1−→ c

box e
n−→ c

(n ≥ 0)

(EUNBOX)
e

0−→ box v

unboxn e
n−→ v

(n > 0)

e
n−k−→ v

unboxk e
n−→ unboxk v

(n > k > 0)
e

n−k−→ c

unboxk e
n−→ c

(n ≥ k > 0)

(EEVAL)
e

0−→ box v1 v1 0−→ v0

eval e
0−→ v0

e
n−→ v

eval e
n−→ eval v

(n > 0)
e

n−→ c

eval e
n−→ c

(n ≥ 0)

(ERAISE)
e

0−→ c

raise e
0−→ c

e
n−→ v

raise e
n−→ raise v

(n > 0)
e

n−→ c

raise e
n−→ c

(n ≥ 0)

(EHANDLE)
e1

0−→ v

handle e1 c e2
0−→ v

e1
n−→ c

handle e1 c e2
n−→ c

(n > 0)

e1
0−→ c e2

0−→ v

handle e1 c e2
0−→ v

e1
n−→ c

handle e1 c′ e2
n−→ c

(n > 0)

e1
0−→ c

handle e1 c′ e2
0−→ c

e2
n−→ c

handle e1 c e2
n−→ c

(n > 0)

e1
n−→ v1 e2

n−→ v2

handle e1 c e2
n−→ handle v1 c v2

(n > 0)
e2

n−→ c

handle e1 c′ e2
n−→ c

(n > 0)

Fig. 2. Operational semantics of λstage
exn
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[x
n�→ v]i = i

[x
n�→ v]c = c

[x
n�→ v]y = v, if x = y and n = 0

= y, otherwise

[x
n�→ v](λy.e) = λy.e, if x = y and n = 0

= λy.([x
n�→ v]e), otherwise

[x
n�→ v](e1 e2) = ([x

n�→ v]e1) ([x
n�→ v]e2)

[x
n�→ v](box e) = box ([x

n+1�→ v]e)

[x
n�→ v](unboxk e) = unboxk ([x

n−k�→ v]e)

[x
n�→ v](eval e) = eval ([x

n�→ v]e)

[x
n�→ v](raise e) = raise ([x

n�→ v]e)

[x
n�→ v](handle e1 c e2) = handle ([x

n�→ v]e1) c ([x
n�→ v]e2)

Fig. 3. Substituting v for free variable x of stage 0 at stage n

n are either values at stage n or raised exceptions. We write c for a raised c
exception.

vn ∈ V n ::= i | c | λx.e | box v1 if n = 0
::= i | c | x | λx.vn | vnvn

| box vn+1 | eval vn | unboxk vn−k

| raise vn | handle vn
1 c vn

2 if n > k ≥ 0

rn ∈ Rn ::= vn | c

Staging semantics of λstage
exn is the same as in λsim

open [6], conservatively extended
with exceptions.

At stage 0, computation include, in addition to normal computation, generat-
ing code and executing generated code. (EINT), (EEXN), (EABS), and (EAPP) are
as usual. (EAPP) defines the beta reduction. The definition of the staged substi-
tution operator [x n�→ v] is in Fig. 3. (EBOX) defines code generation. (EEVAL) at
stage 0 executes generated code: a code template box v1 becomes an expression
v1 then is evaluated. By the type system, v1 is restricted to closed code. (See
section 3). Because only closed code can be evaluated at stage 0, we don’t have
an evaluation rule for variable at stage 0.

At stage > 0, only meaningful computation is code substitution. It consists
of just visiting every sub-expressions and substitute code into code when appro-
priate. Code substitution is by the unboxk expression. At stage n, expression
unboxn e executes the sub-expression e at stage 0 then substitute its result code
for the unboxn expression: (EUNBOX).

(ERAISE) raises an exception only at stage 0. The right side of Fig. 2 shows
that the propagation of raised exception c. A raised exception c is propagated
to the nearest handler that handles exception c at stage 0: (EHANDLE). Raised
exceptions can escape any control structure including stages.



68 H. Eo, I.-S. Kim, and K. Yi

Example 4. In the following expression, an exception c is initially raised at stage
0, is “promoted” to stage 2 (by unbox2), and then escapes to stage 0 (by two
boxes).

c
0−→ c

raise c
0−→ c c is raised at stage 0

unbox2 raise c
2−→ c c is promoted to stage 2

box (unbox2 raise c)
1−→ c c is demoted to stage 1

box (box (unbox2 raise c))
0−→ c c is demoted to stage 0

�

Like exceptions raised during normal computation, stage-escaping exceptions
(raised during code composition) are handled only at stage 0. Hence, handle
expressions at stage> 0 cannot handle a raised exceptions.

Example 5. The following expression evaluates to (box 0) because raised excep-
tion c is propagated to stage 0, and handled there to evaluate into code 0.

c
0−→ c

raise c
0−→ c

unbox1 raise c
1−→ c

box (unbox1 raise c)
0−→ c

0 1−→ 0

box 0 0−→ box 0

handle (box (unbox1 raise c)) c (box 0) 0−→ box 0 handle at stage 0 catches c

�

Example 6. The following expression raises uncaught exception c because handle
expression inside the code template cannot handle c and just propagates it to
stage 0 escaping the code template of stage 1.

c
0−→ c

raise c
0−→ c

unbox1 (raise c) 1−→ c

handle (unbox1 (raise c)) c 0 1−→ c handle at stage 1 cannot catch c

box (handle (unbox1 (raise c)) c 0) 0−→ c

�
As in λsim

open [6], at stages> 0 (at code composition stages) no alpha-equivalence is
supported, i.e., variable-capturing substitution is allowed. If we change a bound
name in expressions of stages> 0, the resulting program’s semantics changes. On
the other hand at stage 0 (at the normal computation stage) alpha-equivalence
is preserved as usual. (We enforce only closed code to be evaluated at stage 0.
See (TEVAL) in Section 3).
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3 Effect Type System

3.1 Exception Types and Effects

We use A,B for types, ϕ for effects, and ψ for a set of exceptions.

A,B ∈ Type ::= int | exn(ψ) | A ϕ→ B | �(Γ � A,ϕ)

Exception type exn(ψ) has a set of exceptions that an expression of that type can
have. As in usual effect systems, function type A

ϕ→ B has a latent effect ϕ that
describes exceptions that may be raised during the evaluation of the function’s
body. Code type �(Γ � A,ϕ) is a conditional modal type in which condition Γ
specifies the types of free variables in the code template of type A. Our code
type is also annotated by a latent effect ϕ that describes exceptions that may
be raised when the code template of that type is evaluated by eval .

ϕ ∈ Effects = 2Exn×N

ψ ∈ Exceptions = 2Exn

c ∈ Exn = set of exception names

Effects in our types are sets of exceptions, where each exception has the number
of stages to escape. The stage-escaping numbers denote how many stages should
those exceptions escape to be handled at stage 0. For ψ ∈ Exceptions, ψn means
{cn | c ∈ ψ} ∈ Effects.

Normal Exceptions vs. Stage-Escaping Exceptions
Normal exceptions, which may be raised during normal computation, and stage-
escaping exceptions, which may be raised during code composition, have a dif-
ferent behavior. If they are in a code template, stage-escaping exceptions can
escape stages, while normal exceptions cannot. For example, raisec raises a nor-
mal exception, while unbox1 (raise c) raises a stage-escaping exception. Hence
box (raise c) does not raise exception c, while box (unbox1 (raise c)) raises
exception c.

Definition 1. For an effect ϕ, and a unary predicate P : N → {true, false},
we define P -restricted effect ϕ, denoted ϕP , as follows:

ϕP def= {cn | cn ∈ ϕ ∧ P (n)}

We can decompose an effect ϕ into a normal effect ϕ=0 and a stage-escaping effect
ϕ>0, where “= 0” is a unary predicate “is equal to 0” and “> 0” is a unary
predicate “is greater than 0”. Hence the normal effect ϕ=0 means exceptions
which escape 0 stages (cannot escape stages), and the stage-escaping effect ϕ>0

means exceptions which escape at least one stage.

Promotion and Demotion of Effects
As shown in Example 4, stage-escaping exceptions can cross stages upwards (by
unboxk ) or downwards (by box). When stage-escaping exceptions are promoted
or demoted to other stages, the effects that estimate those exceptions should
also be promoted or demoted, respectively.
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Definition 2. A promotion ↑k is a function from Effects to Effects such that

↑k ϕ
def= {cn+k | cn ∈ ϕ}, where n ≥ 0 and k > 0.

A demotion ↓ is a function from Effects to Effects such that

↓ ϕ
def= {cn−1 | cn ∈ ϕ}, where n > 0.

3.2 Typing Rules

The typing judgment

Γ0 · · ·Γn � e : A,ϕ

means that an expression e, under type environment Γ0 · · ·Γn has type A and
effect ϕ at stage n. Γ0 · · ·Γn is a sequence of type environments Γ0, · · · , Γn. Γn

is the current type environment. Subscripts 0, · · · , n are stage numbers. Fig. 4
shows our typing rules for λstage

exn .
For exception name c, we include it inside its exception type exn. For instance,

the type of c must be of the form exn(ψ) such that c ∈ ψ:

c ∈ ψ

Γ0 · · ·Γn � c : exn(ψ), ∅ (TEXN)

The type of raise expression raise e can be any arbitrary type A. Because
exceptions ψ are raised at the current stage, (TRAISE) collects ψ0 and the effect
ϕ of its sub-expression e.

Γ0 · · ·Γn � e : exn(ψ), ϕ
Γ0 · · ·Γn � raise e : A,ψ0 ∪ ϕ

(TRAISE)

Handle expression handle e1 c e2 catches exception c of e1 only when the
handle expression is evaluated at stage 0, its effect catches only c0.

Γ0 · · ·Γn � e1 : A,ϕ Γ0 · · ·Γn � e2 : A,ϕ′ ϕ′′ = (ϕ \ {c0}) ∪ ϕ′

Γ0 · · ·Γn � handle e1 c e2 : A,ϕ′′ (THANDLE)

For box expression box e, (TBOX) injects normal exceptions ϕ=0 of the sub-
expression e into the latent effect of the box type, because they can not escape
stages: the box expression would not raise them until unboxed or evaluated.
Stage-escaping exceptions ϕ>0 of e can escape to the outside of the box ex-
pression, hence the effect of the box expression must include them. Because the
evaluation (box e) n−→ c and its premise e

n+1−→ c imply that the raised exception
c escapes one stage (from n+ 1 to n), stage-escaping exceptions ϕ>0 of e should
be demoted to ↓ ϕ>0.
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(TINT) Γ0 · · ·Γn 
 i : int, ∅

(TEXN)

c ∈ ψ
Γ0 · · ·Γn 
 c : exn(ψ), ∅

(TVAR)

Γn(x) = A

Γ0 · · ·Γn 
 x : A, ∅

(TABS)

Γ0 · · ·Γn + x : A 
 e : B,ϕ

Γ0 · · ·Γn 
 λx.e : A
ϕ=0

→ B,ϕ>0

(TAPP)

Γ0 · · ·Γn 
 e1 : A
ϕ′′
→ B,ϕ Γ0 · · ·Γn 
 e2 : A,ϕ′

Γ0 · · ·Γn 
 e1 e2 : B,ϕ ∪ ϕ′ ∪ ϕ′′

(TBOX)

Γ0 · · ·ΓnΓ 
 e : A,ϕ

Γ0 · · ·Γn 
 box e : �(Γ � A,ϕ=0), ↓ ϕ>0

(TUNBOX)

Γ0 · · ·Γn−k 
 e : �(Γn � A,ϕ), ϕ′ n ≥ k > 0

Γ0 · · ·Γn 
 unboxk e : A,ϕ ∪ (↑k ϕ′)

(TEVAL)

Γ0 · · ·Γn 
 e : �(∅ � A,ϕ), ϕ′

Γ0 · · ·Γn 
 eval e : A,ϕ ∪ ϕ′

(TRAISE)

Γ0 · · ·Γn 
 e : exn(ψ), ϕ

Γ0 · · ·Γn 
 raise e : A,ψ0 ∪ ϕ

(THANDLE)

Γ0 · · ·Γn 
 e1 : A,ϕ Γ0 · · ·Γn 
 e2 : A,ϕ′ ϕ′′ = (ϕ \ {c0}) ∪ ϕ′

Γ0 · · ·Γn 
 handle e1 c e2 : A,ϕ′′

(TSUB)

Γ0 · · ·Γn 
 e : A,ϕ ϕ ⊆ ϕ′

Γ0 · · ·Γn 
 e : A,ϕ′

Fig. 4. Typing rules of λstage
exn

Γ0 · · ·ΓnΓ � e : A,ϕ

Γ0 · · ·Γn � box e : �(Γ � A,ϕ=0), ↓ ϕ>0 (TBOX)

For unbox expression unboxk e (k > 0), the only normal exceptions the unbox
expression may have are exceptions in the latent effect ϕ of e. Note that the
evaluation (unboxk e) n−→ c and its premise e

n−k−→ c imply that the stage of the
raised exception c would be increased by k: from n−k to n. Hence, to be handled,
the uncaught exceptions of the unbox expression should escape k more stages
than those of its sub-expression. Hence we promote the effect ϕ′ of e to ↑k ϕ′.

Γ0 · · ·Γn−k � e : �(Γn � A,ϕ), ϕ′ n ≥ k > 0
Γ0 · · ·Γn � unboxk e : A,ϕ ∪ (↑k ϕ′)

(TUNBOX)

For eval expression evale, (TEVAL) allows only closed code to be evaluated by
eval construct. When we evaluate a code with free variables, those free variables
may cause unintended variable capture, because of the alpha-conversion at stage
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0. Recall that we assume that variables in a code template can not be alpha-
converted (for the sake of unhygienic macros), but variables at stage 0 can be
alpha-converted. Hence we force to evaluate only colosed code: the code template
type �(∅ � A,ϕ) of e should have empty environment. Like unbox expression,
the effect of eval expression should have both of the latent effect ϕ and the effect
ϕ′ of e. We don’t need to promote the effect ϕ′ because the stage of e and that
of eval e are the same.

Γ0 · · ·Γn � e : �(∅ � A,ϕ), ϕ′

Γ0 · · ·Γn � eval e : A,ϕ ∪ ϕ′ (TEVAL)

Abstraction λx.e is a value at stage 0, while it can be an evaluable expression
at stage n > 0. Hence the normal exception ϕ=0 of e should be injected to the
latent effect of the function, and might be raised where the function is applied.
Stage-escaping exception ϕ>0 of e should be propagated to λx.e. Note that
c0 ∈ ϕ=0 means that e may raise exception c at stage 0 (e 0−→ c), and cn ∈ ϕ>0

means that e may be evaluated to the raised exception c at stage n > 0 (e n−→ c).

Γ0 · · ·Γn + x : A � e : B,ϕ

Γ0 · · ·Γn � λx.e : A
ϕ=0

→ B,ϕ>0
(TABS)

For application e1 e2, (TAPP) is conventional. All effects from evaluating e1,
e2, and the function’s body are collected. The function body’s effect is the latent
effect in the type of e1.

Γ0 · · ·Γn � e1 : A
ϕ′′
→ B,ϕ Γ0 · · ·Γn � e2 : A,ϕ′

Γ0 · · ·Γn � e1 e2 : B,ϕ ∪ ϕ′ ∪ ϕ′′ (TAPP)

The subsumption rule (TSUB) allows any expression to be treated as having
more effect than it actually does. By applying subsumption rule to the latent
effect, abstractions or the code templates can be treated as having more effect
than reality. Without the subsumption rule, a value of type �(Γ � A, ∅) and a
value of type �(Γ �A, {c0}) could not both be passed as arguments to the same
function, because the function and argument types would have to match exactly.

Γ0 · · ·Γn � e : A,ϕ ϕ ⊆ ϕ′

Γ0 · · ·Γn � e : A,ϕ′ (TSUB)

Example 7. A code template box (raise c), which raises an exception c when
evaluated, has the following typing:

∅∅ � c : exn({c}), ∅
∅∅ � raise c : A, {c0}

∅ � box (raise c) : �(∅ � A, {c0}), ∅.



Type and Effect System for Multi-staged Exceptions 73

The empty effect ∅ implies that the code template will not raise any exception,
and the type �(∅ � A, {c0}) implies that the exception c may be raised when
we execute the code template. �

Example 8. Exceptions may be raised during code composition. Recall the ex-
pression in Example 4.

c
0−→ c

raise c
0−→ c c is raised at stage 0

unbox2 raise c
2−→ c c is promoted to stage 2

box (unbox2 raise c)
1−→ c c is demoted to stage 1

box (box (unbox2 raise c))
0−→ c c is demoted to stage 0

The above expression has the following typing:

∅ � c : exn({c}), ∅
∅ � raise c : �(∅ � A, ∅), {c0}
∅∅∅ � unbox2 raise c : A, {c2}

∅∅ � box (unbox2 raise c) : �(∅ � A, ∅), {c1}
∅ � box (box (unbox2 raise c)) : �(∅ � �(∅ � A, ∅), ∅), {c0}.

This typing means that the expression is a code template of a code template,
and may raise uncaught exception c. The stage-escaping numbers n of cn in the
proof tree exactly capture the dynamic stages of c (0 → 2 → 1 → 0). �

Example 9. An exception raised during code composition can be handled by a
proper handler installed at stage 0. Recall the expression in Example 5. A raised
exception c at stage 0 can be caught by a handler at stage 0:

handle (box (unbox1 raise c)) c (box 0) 0−→ box 0

Our effect type system decides that the above expression has no uncaught excep-
tion:

∅ � c : exn({c}), ∅
∅ � raise c : �(∅ � int, ∅), {c0}
∅∅ � unbox1 raise c : int, {c1}

∅ � box (unbox1 raise c) : �(∅ � int, ∅), {c0}
∅∅ � 0 : int, ∅

∅ � box 0 : �(∅ � int, ∅), ∅
∅ � handle (box (unbox1 raise c)) c (box 0) : �(∅ � int, ∅), ∅

�

Example 10. A raised exception c at stage 0 can not be caught by a handler
in a code template (at stage 1). Recall the expression in Example 6. It raises
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exception c in the code template, and does not handle the exception because the
handler is inside the code template:

box (handle (unbox1 raise c) c 0) 0−→ c

Our effect type system safely estimates that the above expression may raise an
uncaught exception c:

∅ � c : exn({c}), ∅
∅ � raise c : �(∅ � int, ∅), {c0}
∅∅ � unbox1 raise c : int, {c1} ∅∅ � 0 : int, ∅

∅∅ � handle (unbox1 raise c) c 0 : int, {c1}
∅ � box (handle (unbox1 raise c) c 0) : �(∅ � int, ∅), {c0}

�
Example 11. Let’s consider the following code template.

box (handle (raise c) c 0)

The handler inside the code template catches exception c when the code template
is executed. The above code template has the following typing:

∅∅ � c : exn({c}), ∅
∅∅ � raise c : int, {c0} ∅∅ � 0 : int, ∅

∅∅ � handle (raise c) c 0 : int, ∅
∅ � box (handle (raise c) c 0) : �(∅ � int, ∅), ∅

Our system gives a correct effect typing for every stage. �

3.3 Soundness

In our evaluation rule (in Fig. 2), there are two rules which convert values at
stage n to values at another stage m. The eval at stage 0 converts box v1 into
v1 and evaluate v1 at stage 0; it demotes values at stage n > 0 to expressions at
stage (n − 1). The unboxk at stage k > 0 converts box v1 into vk; it promotes
values at stage (n+1) to values at stage (n+k). The following lemma shows that
such demotion and promotion preserve types and effects. We can freely promote
or demote values, because our types and effects only depend on the structure of
their sub-expressions and do not depend on the stages where they are. The only
restriction of demotion is that Γ1 should be ∅, because a value at stage 1 must
not have a free variable of stage 1 to be demoted (or to be evaluated by eval).

Lemma 1 (Demotion and Promotion). Suppose ∅Γ1 · · ·Γn � v : A,ϕ.

1. If Γ1 = ∅ then Γ1 · · ·Γn � v : A,ϕ.
2. ∅Γ ′

1 · · ·Γ ′
mΓ1 · · ·Γn � v : A,ϕ for all Γ ′

1 · · ·Γ ′
m.
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Proof. We prove the lemma by induction on the structure of v. �
Values at stage n > 0 may raise exceptions when demoted to stage 0 (or evaluated
by eval). Hence we can not claim that values at any stage have empty effect. How-
ever, any value v0 at stage 0 has an empty effect (does not raise any exception):

Lemma 2 (Empty Effect of v0). If Γ0 � v : A,ϕ then Γ0 � v : A, ∅.
Proof. We first prove that Γ0 · · ·Γn � v : A,ϕ<n, if Γ0 · · ·Γn � v : A,ϕ. It can be
shown by induction on the structure of v. Then the lemma immediately follows
from ∀ϕ : (ϕ<0) = ∅. �
The soundness theorem shows that every exception that may be raised and
uncaught during the evaluation of an expression should be collected inside the
expression’s effect. For the proof of the soundness theorem, we need Lemma 1
and Lemma 2.

Theorem 1 (Soundness). Suppose ∅Γ1 · · ·Γn � e : A,ϕ.

1. If e n−→ v then ∅Γ1 · · ·Γn � v : A,ϕ.
2. If e n−→ c then ϕ ⊇ {cn}.

Proof. We prove the theorem by induction on the proof tree size of evaluation
rule. We show the representative cases (EUNBOX), (EBOX), and (EHANDLE) in
Appendix A. �

4 Conclusion

We have presented type and effect system for multi-staged language with excep-
tions. The proposed type and effect system checks if we safely synthesize com-
plex controls with exceptions (long jumps) in multi-staged programming. The
proposed exception constructs in multi-staged programming has no artificial re-
striction. Exception-raise and -handle expressions can appear in expressions of
any stage. Exceptions can be raised during code composition and may escape
stages and can be handled only at stage 0. Our effect type system support such
features and is proven safe that empty effect means the input program has no
uncaught exceptions during its evaluation. The obvious next step is to extend
our system to support the let-polymorphism and imperative operations.
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A Proof of Soundness Theorem

Theorem 1 (Soundness). Suppose ∅Γ1 · · ·Γn 
 e : A,ϕ.

1. If e
n−→ v then ∅Γ1 · · ·Γn 
 v : A,ϕ.

2. If e
n−→ c then ϕ ⊇ {cn}.

Proof. By induction on the proof tree size of evaluation rule
n−→. We prove the rep-

resentative cases (EEVAL), (EUNBOX), (EBOX), and (EHANDLE). We can similarly prove
other cases

– (EEVAL)
• Case for eval e

0−→ v0.
(1) ∅ 
 eval e : A,ϕ ∪ ϕ′ Assumption

(2) e
0−→ box v1 By (EEVAL)

(3) v1 0−→ v0 By (EEVAL)

(4) ∅ 
 e : �(∅ � A,ϕ), ∅ By (TEVAL),Lemma 2
(5) ∅ 
 box v1 : �(∅ � A,ϕ), ∅ By I.H. (induction hypothesis)
(6) ∅∅ 
 v1 : A,ϕ By (TBOX)

(7) ∅ 
 v1 : A,ϕ By Lemma 1
(8) ∅ 
 v0 : A,ϕ By I.H.
(9) ∅ 
 v0 : A,ϕ ∪ ϕ′ By (TSUB)

• Case for eval e
n−→ eval v where n > 0.

(1) ∅Γ1 · · ·Γn 
 eval e : A,ϕ ∪ ϕ′ Assumption

(2) e
n−→ v By (EEVAL)

(3) ∅Γ1 · · ·Γn 
 e : �(∅ � A,ϕ), ϕ′ By (TEVAL)

(4) ∅Γ1 · · ·Γn 
 v : �(∅ �A,ϕ), ϕ′ By I.H.
(5) ∅Γ1 · · ·Γn 
 eval v : A,ϕ ∪ ϕ′ By (TEVAL)
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• Case for eval e
n−→ c.

(1) ∅Γ1 · · ·Γn 
 eval e : A,ϕ ∪ ϕ′ Assumption

(2) e
n−→ c By (EEVAL)

(3) ∅Γ1 · · ·Γn 
 e : �(∅ � A,ϕ), ϕ′ By (TEVAL)

(4) ϕ′ ⊇ {cn} By I.H.
(5) ϕ ∪ ϕ′ ⊇ {cn} By (4)

– (EUNBOX)

• Case for unboxn e
n−→ v where n > 0.

(1) ∅Γ1 · · ·Γn 
 unboxn e : A,ϕ ∪ (↑n ϕ′) Assumption

(2) e
0−→ box v By (EUNBOX)

(3) ∅ 
 e : �(Γn � A,ϕ), ϕ′ By (TUNBOX)

(4) ∅ 
 box v : �(Γn � A,ϕ), ∅ By I.H.,Lemma 2
(5) ∅Γn 
 v : A,ϕ By (TBOX)

(6) ∅Γ1 · · ·Γn 
 v : A,ϕ By Lemma 1
(7) ∅Γ1 · · ·Γn 
 v : A,ϕ ∪ (↑n ϕ′) By (TSUB)

• Case for unboxk e
n−→ unboxk v where n > k ≥ 0.

(1) ∅Γ1 · · ·Γn 
 unboxk e : A,ϕ ∪ (↑k ϕ′) Assumption

(2) e
n−k−→ v By (EUNBOX)

(3) ∅Γ1 · · ·Γn−k 
 e : �(Γn � A,ϕ), ϕ′ By (TUNBOX)

(4) ∅Γ1 · · ·Γn−k 
 v : �(Γn � A,ϕ), ϕ′ By I.H.
(5) ∅Γ1 · · ·Γn 
 unboxk v : A,ϕ ∪ (↑k ϕ′) By (TUNBOX)

• Case for unboxk e
n−→ c.

(1) ∅Γ1 · · ·Γn 
 unboxk e : A,ϕ ∪ (↑k ϕ′) Assumption

(2) e
n−k−→ c By (EUNBOX)

(3) ∅Γ1 · · ·Γn−k 
 e : �(Γn � A,ϕ), ϕ′ By (TUNBOX)

(4) ϕ′ ⊇ {cn−k} By I.H.
(5) ↑k ϕ′ ⊇ {cn} By definition of ↑k
(6) ϕ ∪ (↑k ϕ′) ⊇ {cn} By (5)

– (EBOX)

• Case for box e
n−→ box v.

(1) ∅Γ1 · · ·Γn 
 box e : �(Γ � A,ϕ=0), ↓ ϕ>0 Assumption

(2) e
n+1−→ v By (EBOX)

(3) ∅Γ1 · · ·ΓnΓ 
 e : A,ϕ By (TBOX)

(4) ∅Γ1 · · ·ΓnΓ 
 v : A,ϕ By I.H.
(5) ∅Γ1 · · ·Γn 
 box v : �(Γ � A,ϕ=0), ↓ ϕ>0 By (TBOX)

• Case for box e
n−→ c.

(1) ∅Γ1 · · ·Γn 
 box e : �(Γ � A,ϕ=0), ↓ ϕ>0 Assumption

(2) e
n+1−→ c By (EBOX)

(3) ∅Γ1 · · ·ΓnΓ 
 e : A,ϕ By (TBOX)

(4) ϕ ⊇ {cn+1} By I.H.
(5) ϕ>0 ⊇ {cn+1} By definition of ϕ>0

(6) ↓ ϕ>0 ⊇ {cn} By definition of ↓
– (EHANDLE)

• Case for handle e1 c e2
0−→ v.

(1) ∅ 
 handle e1 c e2 : A,ϕ Assumption
(2) ∅ 
 e1 : A,ϕ1 By (THANDLE)

(3) ∅ 
 e2 : A,ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)
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∗ e1
0−→ v.

(5) ∅ 
 v : A,ϕ1 By I.H.
(6) ∅ 
 v : A, ∅ By Lemma 2
(7) ∅ 
 v : A,ϕ By (TSUB)

∗ e1
0−→ c and e2

0−→ v.
(5) ∅ 
 v : A,ϕ2 By I.H.
(6) ∅ 
 v : A,ϕ By (TSUB)

• Case for handle e1 c
′ e2

0−→ c.
(1) ∅ 
 handle e1 c

′ e2 : A,ϕ Assumption

(2) e1
0−→ c By (EHANDLE)

(3) ∅ 
 e1 : A,ϕ1 By (THANDLE)

(4) ∅ 
 e2 : A,ϕ2 By (THANDLE)

(5) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 By (THANDLE)

(6) ϕ1 ⊇ {c0} By I.H.
(7) ϕ ⊇ (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {c0} By (6)

• Case for handle e1 c e2
n−→ v2 where n > 0.

(1) Γ0 · · ·Γn 
 handle e1 c e2 : A,ϕ Assumption

(2) e1
n−→ v1 By (EHANDLE)

(3) e2
n−→ v2 By (EHANDLE)

(4) Γ0 · · ·Γn 
 e1 : A,ϕ1 By (THANDLE)

(5) Γ0 · · ·Γn 
 e2 : A,ϕ2 By (THANDLE)

(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)

(7) Γ0 · · ·Γn 
 v1 : A,ϕ1 By I.H.
(8) Γ0 · · ·Γn 
 v2 : A,ϕ2 By I.H.
(9) Γ0 · · ·Γn 
 v2 : A,ϕ By (TSUB)

• Case for handle e1 c e2
n−→ c where n > 0.

(1) Γ0 · · ·Γn 
 handle e1 c e2 : A,ϕ Assumption
(2) Γ0 · · ·Γn 
 e1 : A,ϕ1 By (THANDLE)

(3) Γ0 · · ·Γn 
 e2 : A,ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)

∗ e1
n−→ c.

(5) ϕ1 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 ⊇ {cn} By (5)

∗ e2
n−→ c.

(5) ϕ2 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 ⊇ {cn} By (5)

• Case for handle e1 c
′ e2

n−→ c where n > 0.
(1) Γ0 · · ·Γn 
 handle e1 c e2 : A,ϕ Assumption
(2) Γ0 · · ·Γn 
 e1 : A,ϕ1 By (THANDLE)

(3) Γ0 · · ·Γn 
 e2 : A,ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 By (THANDLE)

∗ e1
n−→ c.

(5) ϕ1 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {cn} By (5)

∗ e2
n−→ c.

(5) ϕ2 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {cn} By (5) �
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Abstract. We present a local relational reasoning method for reasoning
about contextual equivalence of expressions in a λ-calculus with recur-
sive types and general references. Our development builds on the work
of Benton and Leperchey, who devised a nominal semantics and a local
relational reasoning method for a language with simple types and simple
references. Their method uses a parameterized logical relation. Here we
extend their approach to recursive types and general references. For the
extension, we build upon Pitts’ and Shinwell’s work on relational rea-
soning about recursive types (but no references) in nominal semantics.
The extension is non-trivial because of general references (higher-order
store) and makes use of some new ideas for proving the existence of the
parameterized logical relation and for the choice of parameters.

1 Introduction

Proving equivalence of programs is important for verifying the correctness of
compiler optimizations and other program transformations. Program equivalence
is typically defined in terms of contextual equivalence, which expresses that two
program expressions are equivalent if they have the same observable behaviour
when placed in any program context C. It is generally quite hard to show directly
that two program expressions are contextually equivalent because of the univer-
sal quantification over all contexts. Thus there has been an extensive research
effort to find reasoning methods that are easier to use for establishing contex-
tual equivalence, in particular to reduce the set of contexts one has to consider,
see, e.g., [7,3,1,6] and the references therein. For programming languages with
references, it is not enough to restrict attention to fewer contexts, since one also
needs to be able to reason about equivalence under related stores. To address
this challenge, methods based on logical relations and bisimulations have been
proposed, see, e.g., [8,2,13]. The approaches based on logical relations have so far
been restricted to deal only with simple integer references (or references to such).
To extend the method to general references in typed languages, one also needs
to extend the method to work in the presence of recursive types. The latter is a
challenge on its own, since one cannot easily establish the existence of logical re-
lations by induction in the presence of recursive types. Thus a number of research
papers have focused on relational reasoning methods for recursive types without
references, e.g., [3,1]. Recently, the bisimulation approach has been simplified
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and extended to work for untyped languages with general references [5,4]. For
effectiveness of the reasoning method, we seek local reasoning methods, which
only require that we consider the accessible part of a store and which works in
the presence of a separated (non-interfering) invariant that is preserved by the
context. In [2], Benton and Leperchey developed a relational reasoning method
for a language with simple references that does allow for local reasoning. Their
approach is inspired by related work on separation logic [10,9]. In particular, an
important feature of the state relations of Benton and Leperchey is that they
depend on only part of the store: that allows us to reason that related states
are still related if we update them in parts on which the relation does not de-
pend. In this paper we extend the work of Benton and Leperchey to relational
reasoning about contextual equivalence of expressions in a typed programming
language with general recursive types and general references (thus with higher-
order store). We arrive at a useful reasoning method. In particular, we have used
it to verify all the examples of [5]. We believe that the method is simple to use,
but more work remains to compare the strengths and weaknesses of the method
we present here with that of loc.cit.

Before giving an overview of the technical development, we now present two
examples of pairs of programs that can easily be shown contextually equivalent
with the method we develop. The examples are essentially equivalent to (or
perhaps slightly more involved than) examples in [5]. Section 5 contains the
proofs of contextual equivalence.

The programs M and N shown below both take a function as argument and
returns two functions, set and get. In M , there is one hidden reference y, which
set can use to store a function. The get function returns the contents of y. The
program N uses three local references y0, y1 and p. The p reference holds a
integer value. The set function updates p and depending on the value of p it
stores its argument in either y0 or y1. The get function returns the contents of
y0 or y1, depending on the value of p. Note that the programs store functions
in the store. Intuitively, the programs M and N are contextually equivalent
because they use local storage. The proof method we develop allows us to prove
that they are contextually equivalent via local reasoning.

M = rec f (g: τ → Tτ ′): T (((τ → Tτ ′)→ Tunit)× (unit→ T (τ → Tτ ′))) =
let y ⇐ ref g in
let set ⇐ val (rec f1M (g1 : τ → Tτ ′) : Tunit = y := g1) in
let get ⇐ val (rec f2M (x : unit) : T (τ → Tτ ′) = !y) in

(set,get)

N = rec f (g: τ → Tτ ′): T (((τ → Tτ ′)→ Tunit)× (unit→ T (τ → Tτ ′))) =
let y0 ⇐ ref g in
let y1 ⇐ ref g in
let p ⇐ ref 0 in
let set ⇐ val (rec f1N (g1 : τ → Tτ ′) : Tunit =

if iszero(!p) then
(p := 1; y1 := g1)

else
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(p := 0; y0 := g1)) in
let get ⇐ val (rec f2N (x : unit) : (τ → Tτ ′) =

if iszero(!p) then !y0 else !y1) in
(set,get)

Next consider the programs M ′ and N ′ below. They both have a free variable
g of function type. In M ′, g is applied to a function that just returns unit and
then M ′ returns the constant unit function. In N ′, g is applied to a function
that updates a reference local to N ′, maintaining the invariant that the value
of the local reference is always greater than zero. After the call to g, N ′ returns
the constant unit function if the value of the local reference is greater than zero;
otherwise it diverges (Ω stands for a diverging term). Intuitively, it is clear that
M ′ and N ′ are contextually equivalent, since the local reference in N ′ initially
is greater than zero and g can only update the local reference via the function
it is given as argument and, indeed, we can use our method to prove formally
that M ′ and N ′ are contextually equivalent via local reasoning.

M ′ = let f ⇐ val (rec f ′(a : unit) : Tunit = val ()) in
let w ⇐ gf in

val f

N ′ = let x ⇐ ref 1 in
let f ⇐ val (rec f ′(a : unit) : Tunit) = x := !x + 1) in
let w ⇐ gf in

let z ⇐ if iszero(!x) then Ω else (rec f ′(a : unit) : Tunit = val ()) in
val z

We now give an overview of the technical development, which makes use of a
couple of new ideas for proving the existence of the parameterized logical relation
and for the choice of parameters.

In Section 2 we first present the language and in Section 3 we give a deno-
tational semantics in the category of FM-cpo’s. Adapting methods developed
by Pitts [7] and Shinwell [11,12] we prove the existence of a recursive domain
in (FM-Cpo⊥)4, D = (V,K,M, S), such that i : F (D,D) ∼= D where F is our
domain constructor. The 4-tuple of domains D has the minimal invariant prop-
erty, that is, idD is the least fixed point of δ : (D → D) → (D → D) where
δ(e) = i ◦ F (e, e) ◦ i−1. Denotations of values are given in V, continuations in
K, computations in M and stores in S. We show adequacy via a logical relation,
the existence of which is established much as in [11].

The denotational semantics can be used to establish simple forms of contex-
tual equivalence qua adequacy. For stronger proofs of contextual equivalences
we define a parameterized relation between pairs of denotations of values, pairs
of denotations of continuations, pairs of denotations of computations, pairs of
denotations of stores. We can express contextual equivalence for two computa-
tions by requiring that they have the same terminaton behaviour when placed
in the same arbitrary closing contexts.

Since our denotations belong to a recursive domain, the existence of the pa-
rameterized logical relation again involves a separate proof. The proof requires
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that the relations are preserved under approximations. On the other hand we
want the parameters to express invariants for hidden local areas of related stores,
and such properties of stores will not be preserved under approximations. There-
fore our relations are really given by 4-tuples, which we think of as two pairs: the
4-tuples have the form (d′1, d1, d

′
2, d2), where d′1 $ d1 and d′2 $ d2. We can now

let the approximation be carried out over the primed domain elements d′1, d
′
2,

and preserve the invariant on the non-primed elements d1, d2. Correspondingly,
relatedness of computations is stated as a two-sided termination approximation.
Termination of application of an approximated computation m′

1 to an approxi-
mated continuation k′1 and an approximated store S′

1 implies termination in the
other side of the non-approximated elements, m′

1k
′
1S

′
1 = % =⇒ m2k2S2 = %,

and similarly for the other direction. With this separation of approximation from
the local properties that the parameters express, we can prove that the relation
exists. We can then extract a binary relation, defined via reference to the 4-ary
relation, such that the binary relation implies contextual equivalence.

A parameter expresses properties of two related stores; and computations
are related under a parameter if they have equivalent termination behaviour
when executed in stores, which preserve at least the invariants expressed by the
parameter. Our parameters are designed to express relatedness of pairs in the
presence of higher-order store and therefore they are somewhat more complex
than the parameters used by Benton and Leperchey [2]. As we have seen in the
examples above, we can prove contextual equivalence of two functions, which
allocate local store in different ways, and then return functions set and get that
access the hidden local storage. These local locations can be updated later by
application of the exported set-functions to related arguments. In between the
return of the functions and the application of the returned set-functions, there
might have been built up additional local store invariants. Thus functions stored
by a later call to the returned set-function may require further properties of
stores in order to have equivalent behaviour, than was the case when our set and
get functions were returned. To handle this possibility our parameters include
pairs of locations; two stores are then related wrt. such pairs of locations if the
pair of locations contain values that are related relative to the invariants that
hold for the two stores.

In more detail, a parameter has the form Δ{r1, . . . , rn}. Here Δ is a store type
that types a finite set of locations; these are intuitively our “visible locations.”
The r1, . . . , rn are local parameters. A local parameter ri has its own finite
area of store in each side, disjoint from the visible area and from all the other
local parameters’ store areas. A local parameter ri has the form (P1, LL1) ∨
· · ·∨(Pm, LLm). The P s express properties of two stores and the LLs are lists of
location pairs. It is possible to decide if two states fulfill the properties expressed
by the P s by only considering the contents of ris private areas of store. At least
one P must hold and the corresponding LL must hold values related relative to
the invariants that hold for the two stores (we can also think of this as related
at the given time in computation). Using FM domain theory makes it posible
for us to express the parameters directly by location names.
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We present the definition of our relation, state its existence and the theorem
that relatedness implies contextual equivalence in Section 4. In the following
Section 5 we show how we prove contextual equivalence of our example programs.
We hope that the proofs will convince the reader that our logical relations proof
method is fairly straightforward to apply; in particular the choice of parameters
is very natural. We conclude in Section 6.

For reasons of space most proofs have been omitted from this extended ab-
stract.

2 Language

The language we consider is a call-by-value, monadically-typed λ-calculus with
recursion, general recursive types, and general dynamically allocated references.
Types are either value types τ or computation types Tτ . Values of any closed
value type can be stored in the store.

τ ::= α | unit | int | τ × τ | τ + τ | τref | τ → Tτ | μα.τ
γ ::= τ | Tτ

Typing contexts, Γ , are finite maps from variables to closed value types. We
assume infinite sets of variables, ranged over by x, type variables, ranged over
by α, and locations, ranged over by l. We let L denote the set of locations. Store
types Δ are finite maps from locations to value types. Terms G are either values
V or computations M :

V ::= x | n | l | () | (V, V ′) | iniV | rec f(x : τ) = M | fold V
M ::= V V ′ | let x ⇐ M in M ′ | val V | πiV | ref V | !V |

V := V ′ | case V of in1x1 ⇒ M1; in2x2 ⇒ M2 |
V = V ′ | V + V ′ | iszero V | unfold V

G ::= M | V.

Continuations K take the following form:

K ::= val x | let y ⇐ M in K

The typing judgments take the form

Δ;Γ � V : τ Δ;Γ � M : Tτ Δ;� K : (x : τ)�

The typing rules for values and terms are as in [2] extended with rules for
recursive types, except that the type for references is not restricted. Here we
just include the following three selected rules:

Δ;Γ 
 V : τ

Δ;Γ 
 refV : T (τ ref)

Δ;Γ 
 V : τ [μα.τ/α]

Δ;Γ 
 fold V : μα.τ

Δ;Γ 
 V : μα.τ

Δ;Γ 
 unfold V : T (τ [μα.τ/α])
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Stores Σ are finite maps from locations to closed values. A store Σ has store
type Δ, written Σ : Δ, if, for all l in the domain of Δ, Δ;� Σ(l) : Δ(l).

The operational semantics is defined via a termination judgment Σ, let x ⇐
M in K ↓, where M is closed and K is a continuation term in x. Typed contin-
uation terms are defined by:

Δ;
 val x : (x : τ )�
Δ;x : τ 
M : Tτ ′ Δ;
 K : (y : τ ′)�

Δ;
 let y ⇐M in K : (x : τ )�

The defining rules for the termination judgment Σ, let x ⇐ M in K ↓ are
standard given that the language is call-by-value, with left-to-right evaluation
order. We just include one rule as an example:

Σ, let x⇐ val V in K ↓
Σ, let x⇐ unfold(fold V ) in K ↓

A context is a computation term with a hole, and we write C[.] : (Δ;Γ �
γ) ⇒ (Δ;− � Tτ) to mean that whenever Δ;Γ � G : γ then Δ;− � C[G] : Tτ .

The definition of contextual equivalence is standard and as in [2].

Definition 1. If Δ;Γ � Gi : γ, for i = 1, 2 then G1 and G2 are contextually
equivalent, written

Δ;Γ � G1 =ctx G2,

if, for all types τ , for all contexts C[.] : (Δ;Γ � γ) ⇒ (Δ;− � Tτ) and for all
stores Σ : Δ,

Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓ .

3 Denotational Semantics

We define a denotational semantics of the language from the previous section
and show that the semantics is adequate. The denotational semantics is defined
using FM-domains [11]. The semantics and the adequacy proof, in particular the
existence proof of the logical relation used to prove adequacy, builds on Shin-
well’s work on semantics of recursive types in FM-domains [11]. Our approach is
slightly different from that of Shinwell since we make use of universal domains to
model the fact that any type of value can be stored in the store, but technically
it is a minor difference.

We begin by calling to mind some basic facts about FM-domains; see [11]
for more details. Fix a countable set of atoms, which in our case will be the
locations, L. A permutation is a bijective function π ∈ (L → L) such that the
set {l | π(l) �= l} is finite. An FM-set X is a set equipped with a permutation
action: an operation π • − : perms(L) × X → X that preserves composition
and identity, and such that each element x ∈ X is finitely supported: there is
a finite set L ⊂ L such that whenever π fixes each element of L, the action
of π fixes x: π • x = x. There is a smallest such set, which we write supp(x).
A morphism of FM-sets is a function f : D → D′ between the underlying
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sets that is equivariant: ∀x.π • (fx) = f(π • x). An FM-cpo is an FM-set with
an equivariant partial order relation $ and least upper bounds of all finitely-
supported ω-chains. A morphism of FM-cpos is a morphism of their underlying
FM-sets that is monotone and preserves lubs of finitely-supported chains. We
only require the existence and preservation of lubs of finitely-supported chains, so
an FM-cpo may not be a cpo in the usual sense. The sets Z, N, etc., are discrete
FM-cpos with the trivial action. The set of locations, L, is a discrete FM-cpo
with the action π • l = π(l). The category of FM-cpos is bicartesian closed: we
write 1 and × for the finite products, D ⇒ D′ for the internal hom and 0,+ for
the coproducts. The action on products is pointwise, and on functions is given
by conjugation: π • f = λx.π • (f(π−1 • x)). The category is not well-pointed:
morphisms 1 → D correspond to elements of 1 ⇒ D with empty support. The
lift monad, (−)L, is defined as usual with the obvious action. The Kleisli category
FM-Cpo⊥ is the category of pointed FM-cpos (FM-cppos) and strict continuous
maps, which is symmetric monoidal closed, with smash product ⊗ and strict
function space −−◦. If D is a pointed FM-cpo then fix : (D ⇒ D)−−◦D is defined
by the lub of an ascending chain in the usual way. We write O for the discrete
FM-cpo with elements ⊥ and %, ordered by ⊥ $ %.

As detailed in [11], one may solve recursive domain equations in FM-Cpo⊥.
For the denotational semantics, we use minimal invariant recursive domains:

V ∼= 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V ⊕ V) ⊕ (V ⊗ V) ⊕ (V −−◦ M)⊥ ⊕ V

K ∼= (S −−◦ (V −−◦ O))
M ∼= (K −−◦ (S −−◦ O))
S ∼= L⊥ −−◦ V.

Formally, these are obtained as the minimal invariant solution to a locally FM-
continuous functor F : (FM-Cpo4

⊥)op × FM-Cpo4
⊥ → FM-Cpo4

⊥. We write D for
(V,K,M, S) and i for the isomorphism i : F (D,D) ∼= D. We will often omit the
isomorphism i and the injections into the sum writing, e.g., simply (v1, v2) for
an element of V.

Types, τ are interpreted by [[τ ]] = V, computation types Tτ are interpreted
by [[Tτ ]] = M, continuation types (x : τ)� are interpreted by [[(x : τ)�]] = K,
and store types Δ are interpreted by [[Δ]] = S. Type environments Γ = x1 :
τ1, . . . , xn : τn are interpreted by Vn.

Typing judgments are interpreted as follows:

– [[Δ;Γ � V : τ ]] ∈ ([[Γ ]]−−◦ [[τ ]])
– [[Δ;Γ � M : Tτ ]] ∈ ([[Γ ]]−−◦ [[Tτ ]])
– [[Δ;� K : (x : τ)�]] ∈ K

The actual definition of the interpretations is quite standard, except for alloca-
tion which makes use of the properties of FM-cpo’s:

[[Δ;Γ � refV : T (τref)]] ρ = λk.λS.
k(S([l �→ [[Δ;Γ � V : τ ]] ρ])l

for some/any l /∈ supp(λl′.k(S[l′ �→ [[Δ;Γ � V : τ ]] ρ])l′)
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The definition is much as in [2]. The use of FM-cpo’s ensure that it is a good
definition. As in [2], we use the monad T to combine state with continuations to
get a good control over what the new location has to be fresh for.

We only include two additional cases of the semantic definition, namely the
one for unfold and the one for continuations:

[[Γ � unfold V : T (τ [μα.τ/α])]] ρ = λk.λS.
case [[Δ;Γ � V : μα.τ ]] ρ of i1 ◦ inμ(d) then kSd; else⊥,

where inμ is the appropriate injection of V into 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V ⊕ V)⊕
(V ⊗ V) ⊕ (V −−◦ M)⊥ ⊕ V and i1 is the isomorphism from this sum into V.

[[Δ;� K : (x : τ)�]] = λS.λd.
[[Δ;x : τ � K : Tτ ′]]{x �→ d}(λS′.(λd′.%)⊥)⊥S

Theorem 1 (Soundness and Adequacy). If Δ;� M : Tτ , Δ;� K : (x : τ)�,
Σ : Δ and S ∈ [[Σ : Δ]] then

Σ, let x ⇐ M in K ↓ iff [[Δ;� M : Tτ ]] ∗ [[Δ;� K : (x : τ)�]]S = %.

Soundness is proved by induction and to show adequacy one defines a formal
approximation relation between the denotational and the operational semantics.
The existence proof of the relation is non-trivial because of the recursive types,
but follows from a fairly straightforward adaptation of Shinwell’s existence proof
in [11] (Shinwell shows adequacy for a language with recursive types, but without
references).

Corollary 1. [[Δ;Γ � G1 : γ]] = [[Δ;Γ � G2 : γ]] implies Δ;Γ � G1 =ctx G2.

4 A Parameterized Logical Relation

In this section we define a parameterized logical relation on D and F (D,D), which
we can use to prove contextual equivalence. (In the following we will sometimes
omit the isomorphism i, i−1 between F (D,D) and D).

4.1 Accessibility Maps, Simple State Relations and Parameters

Intuitively, the parameters express properties of two related states by expressing
requirements of disjoint areas of states. There is a “visible” area and a finite
number of “hidden invariants.” In the logical relation, computations are related
under a parameter if they have corresponding termination behaviour under the
assumption that they are executed in states satisfying the properties expressed
by the parameter.

Definition 2. A function A : S → Pfin(L) from S to the set of finite subsets of
L is an accessibility map if

∀S1, S2. (∀l ∈ A(S1). S1l = S2l) ⇒ A(S1) = A(S2)
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We let A∅ denote the accessibility map defined by ∀S.A∅(S) = ∅, and we let
A{l1,...,lk} denote the accessibility map defined by ∀S.A{l1,...,lk}(S) = {l1, . . . , lk}.

Definition 3. A simple state relation P is a triple (p̂, Ap1, Ap2) satisfying that
Ap1 and Ap2 are accessibility maps and p̂ is a relation on S satisfying, for all
states S1, S2, S

′
1, S

′
2 ∈ S,(

∀l1 ∈ Ap1(S1).S1l1 = S′
1l1 ∧ ∀l2 ∈ Ap2(S2).S2l2 = S′

2l2
)

⇒
(
(S1, S2) ∈ p̂ ⇔ (S′

1, S
′
2) ∈ p̂

)
.

Note that a simple state relation is essentially a relation on states for which it
can be decided whether a pair of states belong to the relation only on the basis
of some parts of the states, defined by a pair of accessibility maps.

We denote the “always true” simple state relation (S × S, A∅, A∅) by T .

We now define the notion of a local parameter, which we will later use to express
hidden invariants of two related states. Intuitively, a local parameter has its own
private areas of the states. These areas are used for testing conditions and for
storing related values. The testing condition is a disjunction of simple state
relations, where to each disjunct there is an associated list of pairs of locations
from the two related states. At least one condition must be satisfied and the
corresponding list of locations hold related values.

Definition 4. A local parameter r is a finite non-empty set of pairs
{(P1, LL1), .., (Pm, LLm)}, where each Pi is a simple state relation
Pi = (p̂i, Api1, Api2) and
each LLi is a finite set of location pairs and closed value types
LLi = { (li11, li12, τi1), . . . , (lini1, lini2, τni) }. (ni ≥ 0).

We often write a local parameter as r = ((P1, LL1) ∨ . . . ∨ (Pm, LLm)). For a
location list LL, we write L1 resp. L2 for the set of locations that occur as first
resp. second components in the location list LL. For a local parameter r, there are
associated accessibility maps Ar1 and Ar2 given by ∀S. Ar1(S) =

⋃
i Api1(S)∪L1

and ∀S. Ar2(S) =
⋃

i Api2(S) ∪ L2.
We denote the “always true” local parameter {(T, ∅)} also simply by T . It has

the associated accessibility maps A∅, A∅.

As explained in the introduction we have included the LL-list to be used for
storing related values which may later be updated by exported updating func-
tions. The updated values may require more invariants to hold for the stores in
order to have equivalent behaviour. This interpretation of the local parameter is
expressed in the definition of our invariant relation F (∇,∇) below.

Definition 5. A parameter Δr is a pair (Δ, r), with Δ a store type, and r =
{r1, .., rn} a finite set of local parameters such that T ∈ r.

For a parameter Δr we associate accessibility maps Ar1 and Ar2, given by
∀S. Ar1(S) =

⋃
Ari1(S) and ∀S. Ar2(S) =

⋃
Ari2(S).

For each store type Δ we have a special the “always true” parameter Δid∅ =
Δ{T }.
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Definition 6. For parameters Δ′r′ and Δr define
Δ′r′ � Δr

def⇐⇒ Δ′ ⊇ Δ and r′ ⊇ r.

The ordering relation � is reflexive, transitive and antisymmetric. For all pa-
rameters Δr it holds that there are only finitely many parameters Δ0r0 such
that Δr � Δ0r0. For convenience we sometimes write Δr � Δ′r′ for Δ′r′ � Δr.

4.2 Parameterized Relations and Contextual Equivalence

In this section we will define a parameterized logical relation on D and F (D,D).
Let D = (DV , DK , DM , DS) ∈ {D, F (D,D)}. We define the set of relations R(D)
on D as follows.

R(D) = R̂V × R̂K × R̂M × R̂S where

R̂V = all subsets of
D4

V × {τ | τ is a closed value type} × {parameter} that include
{(⊥, v1,⊥, v2, τ,Δr) | v1, v2 ∈ DV , τ closed value type, Δr parameter}

R̂K = all subsets of
D4

K × {(x : τ)� | (x : τ)� is a continuation type} × {parameter} that include
{(⊥, k1,⊥, k2, (x : τ)�, Δr) |

k1, k2 ∈ DK , (x : τ)� continuation type, Δr parameter}
R̂M = all subsets of
D4

M × {Tτ | Tτ is a closed computation type} × {parameter} that include
{(⊥,m1,⊥,m2, T τ,Δr) |

m1,m2 ∈ DM , T τ closed computation type, Δr parameter}
R̂S = all subsets of D4

S × {parameter} that include
{(⊥, S1,⊥, S2, Δr) | S1, S2 ∈ DS , Δr parameter}

A relation (R1, R2, R3, R4) ∈ R(D) is admissible if, for each i, Ri is closed under
least upper bounds of finitely supported chains of the form (di

1, d1, d
i
2, d2, (type),

Δr)i∈ω where d1, d2, type,Δr are constant. We let Radm(D) denote the admis-
sible relations over D.

Theorem 2. There exists a relational lifting of the functor F to (R(D)op ×
R(D)) → R(F (D,D)) and an admissible relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈
Radm(D) satisfying the equations in Figure 1 and (i, i) : F (∇,∇) ⊂ ∇ ∧
(i−1, i−1) : ∇ ⊂ F (∇,∇).

Proof (Theorem 2, existence of an invariant relation ∇). The proof makes use of
the ideas mentioned in the Introduction in combination with a proof method in-
spired from Pitts [7]. We have defined a relational structure on the domains
D and F (D,D) ∈ FM-Cpo4

⊥ as products of relations on each of their four
domain-projections. Each of these relations is a 4-ary relation with elements
(d′1, d1, d

′
2, d2, (type), Δr) where d′1 = d′2 = ⊥ relates to everything.

We define the action of F (−,+) on relations R−, R+ ∈ D such that it holds
that d′1 $ d1 and d′2 $ d2 in elements (d′1, d1, d

′
2, d2, (type), Δr) of F (R−, R+)n,

n ∈ {V,K,M, S}. In the definition of F (R−, R+)S ∈ R(i−1
S) the accessibility
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F (∇,∇)V = {(⊥, v1, ⊥, v2, τ, Δr) } ∪
{(v′1, v1, v′2, v2, τ,Δr) |

v′1 $ v1 �= ⊥ ∧ v′2 $ v2 �= ⊥ ∧
(v′1, v1, v′2, v2, τ,Δr) ∈ ♦ }

where
♦ = {(in1∗, in1∗, in1∗, in1∗, unit, Δr) } ∪

{(inZn, inZn, inZn, inZn, int, Δr) | n ∈ Z } ∪
{(inLl, inLl, inLl, inLl, (Δl)ref, Δr) | l ∈ dom(Δ) } ∪
{(in⊕inid

′
1, in⊕inid1, in⊕inid

′
2, in⊕inid2, τ1 + τ2, Δr) |

∃Δ0r0 � Δr. (d′1, d1, d2, d2, τi, Δ0r0) ∈ ∇V , i ∈ {1, 2} } ∪
{(in⊗(d′1a, d

′
1b), in⊗(d1a, d1b), in⊗(d′2a, d

′
2b), in⊗(d2a, d2b),

τa × τb, Δr) |
∃Δ0r0 � Δr. (d′1a, d1a, d′2a, d′2a, τa, Δ0r0) ∈ ∇V and

(d′1b, d1b, d′2b, d2b, τb, Δ0r0) ∈ ∇V } ∪
{(in−−◦d′1, in−−◦d1, in−−◦d′2 in−−◦d2, τ → Tτ ′, Δr) |

∀Δ′r′ � Δr, (v′1 , v1, v′2, v2, τ, Δ′r′) ∈ ∇V .
(d′1v′1, d1v1, d′2v′2, d2v2, Tτ ′, Δ′r′) ∈ ∇M } ∪

{(inμd
′
1, inμd1, inμd

′
2, inμd2, μα.τ,Δr) |

∃Δ0r0 � Δr. (d′1, d1, d′2, d2, τ [μα.τ/α], Δ0r0) ∈ ∇V }

F (∇,∇)K = {(k′1, k1, k′2, k2, (x : τ)�, Δr) |
k′1 $ k1 ∧ k′2 $ k2 ∧ ∀Δ′r′ � Δr.
∀(S′

1, S1, S′
2, S2, Δ′r′) ∈ ∇S .

∀(v′1, v1, v′2, v2, τ, Δ′r′) ∈ ∇V .
(k′1S

′
1v

′
1 = % ⇒ k2S2v2 = %) ∧

(k′2S
′
2v

′
2 = % ⇒ k1S1v1 = %) }

F (∇,∇)M = {(m′
1, m1, m′

2, m2, T τ, Δr) |
m′

1 $ m1 ∧ m′
2 $ m2 ∧ ∀Δ′r′ � Δr.

∀(k′1, k1, k′2, k2, (x : τ)�, Δ′r′) ∈ ∇K .
∀(S′

1, S1, S′
2, S2, Δ′r′) ∈ ∇S .

(m′
1k

′
1S

′
1 = % ⇒ m2k2S2 = %) ∧

(m′
2k

′
2S

′
2 = % ⇒ m1k1S1 = %) }

F (∇,∇)S = {(⊥, S1, ⊥, S2, Δr) } ∪
{(S′

1, S1, S′
2, S2, Δr) | r = {r1, . . . , rn} ∧

S′
1 $ S1 �= ⊥ ∧ S′

2 $ S2 �= ⊥ ∧ ∀i �= j, i, j ∈ 1, . . . , n.
Ari1(S1) ∩Arj1(S1) = ∅ ∧ Ari2(S2) ∩Arj2(S2) = ∅ ∧
dom(Δ) ∩Ar1(S1) = ∅ ∧ dom(Δ) ∩Ar2(S2) = ∅ ∧
∀l ∈ dom(Δ).(S′

1l, S1l, S′
2l, S2l, Δl,Δr) ∈ ∇V ∧

∀ra ∈ r.∃(Pb, LLb) ∈ ra. (S1, S2) ∈ p̂b ∧
∀(l1, l2, τ) ∈ LLb.(S′

1l1, S1l1, S
′
2l2, S2l2, τ,Δr) ∈ ∇V

Fig. 1. Invariant Relation ∇
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maps and the simple state relations mentioned in a parameter Δr are only
used on the non-primed elements s1, s2 from (s′1, s1, s

′
2, s2, Δr). As explained,

approximation will be carried out on the primed domain elements. Therefore,
we define application of a pair of functions (f, j) to a relation only for f $ j with
j an isomorphism j ∈ {i, i−1, idD, idF (D,D)}. In an application (f, j)R we apply
f to the elements in the primed positions, and j to the elements of the non-
primed positions. Then we define (f, j) : R ⊂ S to mean that set theoretically
(f, j)R ⊆ S. It holds that F (R−, R+) preserves admissibility of R+. It also holds
that R−, R+, S−, S+ ∈ R(D) with (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+

implies (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+). These properties are
essential for the proof of existence of the invariant relation ∇.

Proposition 1 (Weakening). For all Δ′r′ � Δr,

– (v′1, v1, v
′
2, v2, τ,Δr) ∈ ∇V ⇒ (v′1, v1, v

′
2, v2, τ,Δ

′r′) ∈ ∇V ,
– (k′1, k1, k

′
2, k2, (x : τ)�, Δr) ∈ ∇K ⇒ (k′1, k1, k

′
2, k2, (x : τ)�, Δ′r′) ∈ ∇K ,

– (m′
1,m1,m

′
2,m2, T τ,Δr) ∈ ∇M ⇒ (m′

1,m1,m
′
2,m2, T τ,Δ

′r′) ∈ ∇M .

Below we define a binary relation between denotations of typing judgement con-
clusions. This relation will be used as basis for proofs of contextual equivalence.
The relation is defined by reference to the 4-ary relations from ∇. For two closed
terms, two continuations, or two states the binary relation requires that their de-
notations d1, d2 are related as two pairs (d1, d1, d2, d2, (type), parameter) ∈ ∇j .
The denotations of open value-terms with n free variables belong to Vn−−◦V, de-
notations of open computation terms toVn−−◦M. They must give related elements
in ∇ whenever they are applied to n-tuples of ∇-related elements form V.

Definition 7 (Relating denotations of open expressions)

– For all Γ = x1 : τ1, . . . , xn : τn and Δ;Γ � V1 : τ and Δ;Γ � V2 : τ
let v1 = [[Δ;Γ � V1 : τ ]] and v2 = [[Δ;Γ � V2 : τ ]], and define

(v1, v2, τ,Δr) ∈ ∇Γ
V

def⇐⇒
∀Δ′r′ � Δr.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi, Δ

′r′) ∈ ∇V .

(v1(v′1i), v1(v1i), v2(v′2i), v2(v2i), τ,Δ′r′) ∈ ∇V .

– For all Γ = x1 : τ1, . . . , xn : τn, Δ;Γ � M1 : Tτ and Δ;Γ � M2 : Tτ ,
let m1 = [[Δ;Γ � M1 : Tτ ]] and m2 = [[Δ;Γ � M2 : Tτ ]], and define

(m1,m2, T τ,Δr) ∈ ∇Γ
M

def⇐⇒
∀Δ′r′ � Δr.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi, Δ

′r′) ∈ ∇V .

(m1(v′1i),m1(v1i),m2(v′2i),m2(v2i), T τ,Δ′r′) ∈ ∇M .

– For all Δ;� K1 : (x : τ)� and Δ;� K2 : (x : τ)�,
let k1 = [[Δ;� K1 : (x : τ)�]] and k2 = [[Δ;� K2 : (x : τ)�]], and define

(k1, k2, (x : τ)�, Δr) ∈ ∇∅
K

def⇐⇒ (k1, k1, k2, k2, (x : τ)�, Δr) ∈ ∇K .
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– For all Σ1 : Δ, Σ2 : Δ, let S1 ∈ [[Σ1 : Δ]] and S2 ∈ [[Σ2 : Δ]], and define

(S1, S2, Δr) ∈ ∇∅
S

def⇐⇒ (S1, S1, S2, S2, Δr) ∈ ∇S .

Lemma 1

1. Suppose (m1,m2, T τ,Δr) ∈ ∇Γ
M . We then have that

∀Δ′r′ � Δr.∀(v1j , v2j , τj , Δ
′r′) ∈ ∇∅

V .∀j ∈ {1, . . . , n}.
∀(k1, k2, (x : τ)�, Δ′r′) ∈ ∇∅

K .∀(S1, S2, Δ
′r′) ∈ ∇∅

S .
(i−1(m1(v1j)))k1S1 = % ⇐⇒ (i−1(m2(v2j)))k2S2 = %.

Theorem 3 (Fundamental Theorem). For all parameters Δr it holds that

– if Δ;Γ � V : τ then ([[Δ;Γ � V : τ ]], [[Δ;Γ � V : τ ]], τ,Δr) ∈ ∇Γ
V ,

– if Δ;Γ � M : Tτ then ([[Δ;Γ � M : Tτ ]], [[Δ;Γ � M : Tτ ]], T τ,Δr) ∈ ∇Γ
M .

The Fundamental Theorem is proved in the standard way by showing that all
the typing rules preserve relatedness in ∇Γ ; weakening (Proposition 1) is used
in several proof cases.

Lemma 2

– ∀r. ([[Δ;� val x : (x : τ)�]], [[Δ;� val x : (x : τ)�]], (x : τ)�, Δr) ∈ ∇∅
K ,

– if S ∈ [[Δ]] then (S, S,Δid∅) ∈ ∇∅
S.

The following theorem expresses that we can show two computations or two
values to be contextually equivalent by showing that they are related in ∇Γ

under a parameter Δid∅, which does not require that any hidden invariants
hold for states. The computations may themselves be able to build up local
state invariants and a proof of relatedness will often require one to express these
invariants; see the examples in the next section.

Theorem 4 (Contextual Equivalence). Let C[ ] : (Δ;Γ � γ) ⇒ (Δ;� Tτ)
be a context. If Δ;Γ � G1 : γ and Δ;Γ � G2 : γ and

([[Δ;Γ � G1 : γ]], [[Δ;Γ � G2 : γ]], γ,Δid∅) ∈ ∇Γ
j , j ∈ {V,M}

then

∀Σ : Δ. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓).

5 Examples

Before presenting our examples, we will first sketch how a typical proof of contex-
tual equivalence proceeds. Thus, suppose we wish to show that two computations
m1 and m2 are contextually equivalent. We then need to show that they are re-
lated in a parameter Δid∅ or, equivalently, in Δr, for any r. This requires us to
show, for any extended parameter Δ1r1, any pair1 of continuations k1 and k2

1 Formally, we consider 4-tuples.
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related in Δ1r1, and any pair of states S1 and S2 related in Δ1r1, m1k1S1 and
m2k2S2 have the same termination behaviour. The latter amounts to showing
that k1(S1[. . .])v1 and k2(S2[. . .])v2 have the same termination behaviour, where
S1[. . .] and S2[. . .] are potentially updated versions of S1 and S2; and v1 and v2

are values. Since k1 and k2 are assumed related in Δ1r1, it suffices to define a
parameter Δ2r2 extending Δ1r1 and show that S1[. . .] and S2[. . .] are related
in Δ2r2 and that v1 and v2 are related in Δ2r2. Typically, the definition of the
parameter Δ2r2 essentially consists of defining one or more local parameters,
which capture the intuition for why the computations are related.

In the first example below we prove that M and N from the Introduction are
contextually equivalent. In this case, the only local parameter we have to define
is r̃3 = ((P1, LL1) ∨ (P2, LL2)), where

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0)},
P2 = ({(S1, S2) | S2lp = n �= 0}, A∅, A{lp}), LL2 = {(ly, ly1)}.

This local parameter expresses that, depending on the value of S2(lp), either the
locations (ly, ly0) or the locations (ly, ly1) contain related values.

In the first subsection below we present the proof of contextual equivalence
of M and N in detail. Formally, there are several cases to consider, but do note
that the proof follows the outline given above and is almost automatic except
for the definition of the local parameter shown above.

5.1 Example 1

Consider the programs M and N from the Introduction.
We want to show that M and N are related in any parameter Δr, that is

∀Δr. ([[∅;� M : σ]], [[∅;� N : σ]]), σ,Δr) ∈ ∇∅
V . Here σ=(τ → Tτ ′)→T (σ1 × σ2),

and σ1 = (τ → Tτ ′) → Tunit and σ2 = unit → (τ → Tτ ′)). As M and
N are values of function type, their denotations have the forms in−−◦dM and
in−−◦dN . We need to show ∀Δ1r1 � Δr.∀(v′1, v1, v

′
2, v2, τ → Tτ ′, Δ1r1) ∈ ∇V .

(dMv′1, dMv1, dNv′2, dNv2, T (σ1 × σ2), Δ1r1) ∈ ∇M .
It suffices to show that ∀Δ2r2 � Δ1r1.∀(k′1, k1, k

′
2, k2, (x : σ1 × σ2)�, Δ2r2) ∈

∇K . ∀(S′
1, S1, S

′
2, S2, Δ

2r2)∈∇S it holds that (dMv′1)k
′
1S

′
1 =%=⇒(dNv2)k2S2 =

% and (dNv′2)k
′
2S

′
2 = % =⇒ (dMv1)k1S1 = %.

Now,(dMv1)k1S1 = k1(S1[ly �→ v1])([[∅; y � recf1M ]](y �→ ly), [[∅; y � recf2M ]](y
�→ ly)), where ly is a location that is fresh wrt. the store S1 in combination with
the parameter Δ2r2, i.e.,

ly /∈ dom(Δ2) ∪Ar21(S1). (1)

The value of (dMv′1)k′1S′
1 is similar.

Moreover,

(dNv2)k2S2 = k2 (S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2])
([[∅; p, y0, y1 � recf1N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1),
[[∅; p, y0, y1 � recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1)),
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where lp, ly0, ly1 are locations that are fresh wrt. the store S2 in combination
with the parameter Δ2r2, i.e

lp, ly0, ly1 /∈ dom(Δ2) ∪Ar22(S2). (2)

The value of (dNv′2)k
′
2S

′
2 is similar.

Since the continuations are related in the parameter Δ2r2 it suffices to show
that, if S′

1 �= ⊥∨ S′
2 �= ⊥ then we can give an extended parameter Δ3r3 �Δ2r2

such that the updated states and the values (pairs of (set,get)) are related in the
extended parameter Δ3r3.

We let Δ3r3 = Δ2(r2 ∪ {r̃3}), where r̃3 = ((P1, LL1) ∨ (P2, LL2)), and

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0, τ → Tτ ′)},
P2 = ({(S1, S2) | S2lp = n �= 0}, A∅, A{lp}), LL2 = {(ly, ly1, τ → Tτ ′)}.

Recall ∀S. A∅(S) = ∅ ∧ ∀S. A{lp}(S) = {lp}.
Then it holds that the accessibility maps associated with the local parameter r̃3,
are given by ∀S.Ar̃31(S) = {ly} and ∀S.Ar̃32(S) = {lp, ly0, ly1}.

We now verify that

(S′
1[ly �→ v′1], S1[ly �→ v1], S′

2[lp �→ inZ0, ly0 �→ v′2, ly1 �→ v′2],
S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2], Δ3r3) ∈ ∇S .

(3)

By (1) and (2), all locations viewed by the local parameter r̃3 are disjoint
from dom(Δ2) and from all local areas viewed by r2. The stores have only been
changed in locations viewed by r̃3. Since values related in a parameter are also
related in any extending parameter (weakening) every requirement from Δ2r2

still holds. Finally, since S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2](lp) = 0 and the values
stored in locations ly and ly0 in the updated stores, namely v′1, v1, v

′
2, v2, are

related in Δ1r1 and then by weakening also in Δ3r3, the first disjunct of r̃3 is
satisfied, and hence (3) holds.

It remains to show
A: ([[∅; y � recf1M ]](y �→ ly), [[∅; y � recf1M ]](y �→ ly), [[∅; p, y0, y1 � f1N ]](p �→

lp, y0 �→ ly0, y1 �→ ly1), [[∅; p, y0, y1 � recf1N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1), (τ →
Tτ ′) → Tunit, Δ3r3) ∈ ∇V and

B: ([[∅; y� recf2M ]](y �→ ly), [[∅; y� recf2M ]](y �→ ly), [[∅; p, y0, y1�recf2N ]](p �→
lp, y0 �→ ly0, y1 �→ ly1)[[∅; p, y0, y1 � recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1), (τ →
Tτ ′) → Tunit, Δ3r3) ∈ ∇V .

Now let Δ4r4 � Δ3r3, (w′
1, w1, w

′
2, w2, τ → Tτ ′, Δ4r4) ∈ ∇V , and let Δ5r5 �

Δ4r4, (K ′
1,K1,K

′
2,K2, (x : τ → Tτ ′)�Δ5r5) ∈ ∇K , (S′

1, S1, S
′
2, S2, Δ

5r5) ∈
∇S , (c′1, c1, c

′
2, c2, (x : unit)�, Δ5r5) ∈ ∇K .

We have denotations [[∅; y � recf1M ]](y �→ ly) = in−−◦dM1, [[∅; p, y0, y1 �
recf1N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1) = in−−◦dN1, [[∅; y � recf2M ]](y �→ ly) =
in−−◦dM2, [[∅; p, y0, y1 � recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1) = in−−◦dN2.
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A: Now we want to show relatedness of the setters. As before if w′
1 = w′

2 = ⊥
or S′

1 = S′
2 = ⊥ we are done. Otherwise we reason as follows.

Observe that (dM1w1)c1S1 =c1(S1[ly �→w1])in1∗ and similarly (dM1w1)c′1S′
1 =

c′1(S
′
1[ly �→ w′

1])in1∗. Also, (dN1w2)c2S2 = c2(S2[lp �→ inZ0, ly0 �→ w2])in1∗, if
S2lP �= 0, and (dN1w2)c2S2 = c2(S2[lp �→ inZ1, ly1 �→ w2])in1∗, if S2lP = 0.
Similarly for the approximation (dN1w

′
2)c

′
2S

′
2.

Since the states are related in Δ5r5 which is an extension of Δ3r3 we know
that the content of S2lp is inZn for some n. We know that the continuations
c′1, c1, c

′
2, c2 are related in Δ5r5. (in1∗, in1∗, in1∗, in1∗, unit, Δ5r5) since they are

related in any parameter. So if we can show that the updated states are related
in Δ5r5 we are done.

The states S′
1, S1, S

′
2, S2 are related in Δ5r5. All changes are only within the

store areas belonging to r̃3 and the changes preserve the invariant for r̃3, hence
the updated states are still related in Δ5r5. We conclude that the setters are
related in ∇3r3.

B: Now we want to show relatedness of the getters. As before, if the deno-
tations are applied to related unit type values where the approximations are ⊥
or if S′

1 = S′
2 = ⊥ we are done. Otherwise we reason as follows. Note that

(dM2in1∗)K1S1 = K1S1(S1ly) and similarly (dM2in1∗)K ′
1S

′
1 = K ′

1S
′
1(S′

1ly).
Since the states are not ⊥ and are related in Δ5r5 which is an extension of
Δ3r3 we know that the content of S2lp is inZn for some n. We have that
(dN2in1∗)K2S2 = K2S2(S2ly0), if n = 0, and (dN2in1∗)K2S2 = K2S2(S2ly1), if
n �= 0. Similarly for the approximation (dN2in1∗)K ′

2S
′
2.

We know that the continuations K ′
1,K1,K

′
2,K2 and the states S′

1S1, S
′
2, S2

are related in Δ5r5. So if we can show that the retrieved values are related in
Δ5r5 we are done.

Since the states S′
1S1, S

′
2, S2 are related in Δ5r5 they satisfy the invariant of

r̃3. So the content of S2lp is inZn for some n. If n = 0 then S′
1ly, S1ly, S

′
2ly0, S2ly0

are related in Δ5rr , and if n �= 0 then S′
1ly, S1ly, S

′
2ly1, S2ly1 are related in Δ5rr ,

again by the requirement from r̃3. This is what we need for the retrieved values
to be related. We conclude that the getters are related in ∇3r3.

Then we can conclude that ([[M ]], [[N ]], σ,Δr) ∈ ∇∅
V , and as Δr was arbi-

trary that they are related in any parameter. Hence the programs M and N are
contextually equivalent.

5.2 Example 2

Consider the computation terms M ′ and N ′ from the Introduction. They both
have a free variable g of function type. We want to show that M ′ and N ′ are
related in any parameter Δr.

We need to show ∀Δ1r1�Δr.∀(g′1, g1, g
′
2, g2, σ,Δ

1r1) ∈ ∇V .∀Δ2r2�Δ1r1.∀(k′1,
k1, k

′
2, k2, (x : σ1)�, Δ2r2 ∈ ∇K).∀(S′

1, S1, S
′
2, S2, Δ

2r2) ∈ ∇S . [[∅; g : σ � M ′ :
Tσ1]](g �→ g′1)k

′
1S

′
1 = % =⇒ [[∅; g : σ � N ′ : Tσ1]](g �→ g2)k2S2 = % and [[∅; g :

σ � N ′ : Tσ1]](g �→ g′2)k′2S′
2 = % =⇒ [[∅; g : σ � M ′ : Tσ1]](g �→ g1)k1S1 = %.

Here σ = σ1 → Tunit, and σ1 = unit → Tunit.
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For the proof of this we define a local parameter r̃3 = (P 3, ∅) for P 3 =
({(Sa, Sb)| Sblx = inZn > 0)}, A∅, A{lx}), where lx is fresh for dom(Δ2) ∪
Ar22(S2). Then we have a parameter Δ3r3 where Δ3 = Δ2 and r3 = r2 ∪ {r̃3}
which we use in the proof.

6 Conclusion

We have presented a local relational proof method for establishing contextual
equivalence of expressions in a language with recursive types and general refer-
ences, building on earlier work of Benton and Leperchey [2]. The proof of exis-
tence of the logical relation is fairly intricate because of the interplay between
recursive types and local parameters for reasoning about higher-order store.
However, the method is easy to use on examples: the only non-trivial steps are
to guess the right local parameters — but since the local parameters express
the intuitive reason for contextual equivalence, the non-trivial steps are really
fairly straightforward. It is possible to extend our method to a language also
with impredicative polymorphism; we will report on that on another occasion.
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Abstract. Modularity in programming language semantics derives from
abstracting over the structure of underlying denotations, yielding seman-
tic descriptions that are more abstract and reusable. One such semantic
framework is Liang’s modular monadic semantics in which the underlying
semantic structure is encapsulated with a monad. Such abstraction can
be at odds with program verification, however, because program specifi-
cations require access to the (deliberately) hidden semantic representa-
tion. The techniques for reasoning about modular monadic definitions of
imperative programs introduced here overcome this barrier. And, just like
program definitions in modular monadic semantics, our program specifica-
tions and proofs are representation-independent and hold for whole classes
of monads, thereby yielding proofs of great generality.
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1 Introduction

Modular monadic semantics (MMS) provides a powerful abstraction principle for
denotational definitions via the use of monads and monad transformers [13,2,21]
and MMS supports a modular, “mix and match” approach to semantic definition.
MMS has been successfully applied to a wide variety of programming languages
as well as to language compilers [8,6].

What is not well-recognized is the impact that the semantic factorization
by monad transformers in MMS has on program specification and verification.
Modularity comes with a price! The monad parameter to an MMS definition
is a “black box” (i.e., its precise type structure is unknown) and must remain
so if program abstraction is to be preserved. Yet, this makes reasoning with
MMS language definitions using standard techniques frequently impossible. How
does one reason about MMS specifications without sacrificing modularity and
reusability? Furthermore, is there a notion of proof abstraction for MMS akin to
its notion of program abstraction? This paper provides answers in the affirmative
to these questions for imperative languages.
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This paper presents a novel form of specification for reasoning about MMS
definitions called observational program specification (OPS), as well as related
proof techniques useful for proving such specifications. To reason about MMS
definitions (which are parameterized by monads), it is necessary to parameter-
ize the specifications themselves by monads as well. This is precisely what OPS
does by lifting predicates to the computational level, and we refer to such lifted
predicates as observations. Both MMS definitions and OPS specifications are pa-
rameterized by a monad that hides underlying denotational structure, thereby
allowing greater generality in both programs and proofs alike. And just as MMS
provides a notion of program abstraction, OPS provides a notion of proof ab-
straction. Observational program specifications and proofs are representation-
independent, holding for whole classes of monads, thereby yielding proofs of
great generality.

The methodology pursued here is as follows. Axioms characterizing alge-
braically the behavior of state monads are defined, and it is demonstrated that
these axioms are preserved under monad transformer application. Then, a de-
notational semantics for the simple imperative language with loops is given in
terms of state monads. Using OPS and “observation” computations, Hoare’s
classic programming logic [9] for this language is embedded into its own state-
monadic semantics. Furthermore, it is demonstrated that the inference rules of
this logic are derivable from the embedding, relying only on the state monad
axioms and facts about observations. This provides a notion of proof abstrac-
tion for the simple imperative language because proofs in Hoare logic can now
be lifted to any monad with state regardless of other effects it encapsulates!

This paper has the following structure. Section 2 motivates OPS, and
Section 3 outlines background material necessary to understand this paper, in-
cluding overviews of monads and monad transformers. In Section 4, the axioma-
tization of state monads and their preservation properties with respect to monad
transformer application are stated and proved. In Section 5, the notion of obser-
vations is made precise. Section 6 presents the embedding of Hoare logic, and also
the proof of soundness of this embedding. Section 7 compares the present work
with related research. Conclusions and future work are outlined in Section 8.

2 Introducing Observational Specifications

As an example, consider the correctness of an imperative construct p! defined in
a monad with a state Sto. Generally [26,15], a partial correctness specification
of an imperative feature like this would take the form of a relation * between
input and output states σ0 and σ1, so that σ0 *σ1 means that the state σ1 may
result from the execution of p! in σ0. If p! were defined in the single state monad
St a = Sto → a× Sto, then the correctness of p! would be written:

∀σ0 : Sto. σ0 * (π2(p! σ0)) (1)

where π2 is the second projection function λ(−, x).x. However, if p! were rein-
terpreted in the “Environment+State” monad EnvSt a = Env → Sto → a×Sto,
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then the above correctness specification would be rewritten as:

∀ρ0 : Env. ∀σ0 : Sto. σ0 * (π2(p! ρ0 σ0)) (2)

One can see from these two examples that every monad in which p! is inter-
preted requires a new correctness specification! Because specifications (1) and
(2) rely on the fixed structure of St and EnvSt, respectively, there is no way
of reusing them when p! is reinterpreted in another monad; or in other words,
they are representation-dependent specifications. Consequently, each new specifi-
cation will require a new proof as well. Because state monads may be arbitrarily
complex—consider those in Figure 1—this makes proof abstraction attractive.

How does one develop a notion of proof abstraction akin to MMS program
abstraction? The key insight here is that, because the language definitions we
use are parameterized by a monad, it is necessary to develop a specification
style that is also parameterized by a monad. The first step is to add a new,
distinguished value type prop, denoted by the discrete CPO {tt,ff}. The type
prop must be distinguished from the Bool type in languages which have recursive
Bool -valued functions because the denotation of Bool in such cases is a pointed
CPO. In the present work, it is sufficient to identify prop with Bool because the
language considered here does not allow recursion over booleans.

Assume that g is a monadic operator which reads the current Sto state. For
example in St, it would simply be λσ.(σ, σ), and it would have a similar defini-
tion in EnvSt. Then, the correctness condition (σ0 *σ1) ∈ prop may then be a
computed value for appropriate stores σ0 and σ1:

g 	 λσ0.
p! 	 λ .
g 	 λσ1.
η(σ0 *σ1)

=
p! 	 λ .
η(tt) (3)

What does this equation mean? Examining the left-hand side of Equation 3, the
execution of p! is couched between two calls to g, of which the first call returns
the input store σ0 and the second call returns the output store σ1 resulting
from executing p!. Note that σ1 will reflect any updates to the store made by
p!. Finally, the truth-value of the prop expression (σ0 *σ1) is returned. The
right-hand side of Equation 3 executes p! and then always returns tt. Observe
also that it was necessary to execute p! on the right-hand side so that identical
effects (e.g., store updates and non-termination) would occur on both sides of
the equation. Equation 3 requires that (σ0 *σ1) be tt for all input and output
stores σ0 and σ1, respectively, which is precisely what we want.

Equation 3 is a representation-independent specification of p!. In the single
store monad St, it means precisely the same thing as (1), while in the monad
EnvSt, (3) means exactly the same thing as (2). In fact, Equation 3 makes sense
in any monad where p! makes sense—consider the state monads in Figure 1.
Such monads are called state monads—a notion made precise in Section 4. It
is called an observational specification because the left-hand side of (3) gathers
certain data from different stages in the computation (i.e., stores σ0 and σ1) and
“observes” whether or not (σ0 *σ1) holds.
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M0α = Sto→ α× Sto
M1α = e1 → (s1 → (s2 → (Sto→ ((((α× s1)× s2)× Sto) + err1)))))

M2α = e1 → ((α→ (Sto→ ((ans1 × Sto) + err1)))→ (Sto→ ((ans1 × Sto) + err1)))

M3α = e1 → (e2 →
((α→ ((ans1 → (Sto→ (((ans2 × Sto) + err1) + err2)))

→ (Sto→ (((ans2 × Sto) + err1) + err2))))
→ ((ans1 → (Sto→ (((ans2 × Sto) + err1) + err2)))

→ (Sto→ (((ans2 × Sto) + err1) + err2)))))

...

Fig. 1. State Monads on store Sto may be arbitrarily complex, complicating “brute
force” induction on their types. Each of these monads may be created through appli-
cations of the state, environment, CPS, and error monad transformers (see Figure 2).

3 Background

This section outlines the background material necessary to understand the present
work. Due to space constraints, we must assume of necessity that the reader is
familiar with monads. Below we present a brief overview of monad transform-
ers and modular monadic semantics and discuss how program modularity and
abstraction arise within MMS language specifications.

Monads, Monad Transformers and Liftings. This section provides a brief
overview and readers requiring more background should consult the related work
(especially, Liang et al. [14]).

A structure (M, η, �) is a monad if, and only if, M is a type constructor (func-
tor) with associated operations bind (	 : Mα → (α → Mβ) → Mβ) and unit
(η : α → Mα) obeying the well-known “monad laws” [14]:

(η a) 	 k = k a (left unit)
x 	 η = x (right unit)

x 	 (λa.(k a 	 h) = (x 	 k) 	 h (assoc)

Given two monads, M and M′, it is natural to ask if their composition, M◦M′, is
also a monad, but it is well-known that monads generally do not compose in this
simple manner [2]. However, monad transformers do provide a form of monad
composition [2,14,21]. When applied to a monad M, a monad transformer T cre-
ates a new monad M′. For example, the state monad transformer, (StateT s),
is shown in Figure 2. (Here, the s is a type argument, which can be replaced
by any type which is to be “threaded” through the computation.) Note that
(StateT s Id) is identical to the state monad (St a = s → a×s). The state monad
transformer also provides update u and get g operations to update and read,
respectively, the new state in the “larger” monad. Figure 2 also presents (the
endofunction parts of) three other commonly-used monad transformers: envi-
ronments EnvT, continuation-passing ContT, and exceptions ErrorT. The monad
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State Monad Transformer (StateT s)

Sα = StateT sMα = s→ M(α× s)
ηS : α→ Sα
ηS x = λσ. ηM(x, σ)

(�S) : (Sα)→ (α→ Sβ)→ (Sβ)
x �S f = λσ0. (xσ0) �M (λ(a, σ1).f a σ1)

liftS : Mα→ Sα
liftS x = λσ. x �M λy. ηM(y, σ)

u : (s→ s)→ S()
u(Δ : s→ s) = λσ. ηM((),Δσ)

g : Ss
g = λσ. ηM(σ, σ)

Environment Transformer (EnvTe)

Eα = EnvT e M α = e→M α
liftE x = λ (ρ : e). x
rdEnv : Ee
rdEnv = λ (ρ : e). ηM ρ
inEnv : e→ Eα→ Eα

inEnv ρ ϕ = λ ( : e). ϕ ρ

CPS Transformer (ContTans)

Cα = ContT ans M α
= (α→M ans)→M ans

liftC x = (x �M)

Error Transformer (ErrorTerr)

Err α = ErrorT err M α = Mα + err
liftErr x = x �M λ v . ηM(injlv)

Fig. 2. Examples of Monad Transformers: state (left); environment, cps and error
(right) monad transformers

laws are preserved by monad transformers [13,2]. Please see Liang et al. [14] for
further details.

Observe that, if M has operators defined by earlier monad transformer appli-
cations, then those operators must be redefined for the “larger” monad (T M).
This is known as lifting the operators through T. Lifting is the main technical
issue in [2,14]; it is related to, but should not be confused with, the lift operators
in Figure 2). For each monad transformer T presented in Figure 2, the liftings
of the update and get operators from M to (T M) are (liftT ◦ u) and (liftT g).

The Lifting Laws capture the behavior of the lift function [14] associated with
a monad transformer. Liang’s definition of monad transformer requires that a lift
function obeying the Lifting Laws be defined and, in his thesis[13], he defines lift
operators for a wide range of monad transformers (including those in Figure 2)
and verifies the Lifting Laws for them.

Definition 1 (Lifting Laws). For monad transformer t, and monad m: lift ◦
ηm = ηtm and lift(x 	m f) = (lift x) 	tm (lift ◦ f).

Modular Monadic Semantics & Program Abstraction. The principal ad-
vantage of the MMS approach to language definition is that the underlying deno-
tational model can be arbitrarily complex without complicating the denotational
description unnecessarily—what we have referred to earlier as separability. The
beauty of MMS is that the equations defining [[t]] can be reinterpreted in a variety
of monads M. To borrow a term from the language of abstract data types, the
monadic semantics of programming languages yields representation-independent
definitions. This is what prompts some authors (notably Espinosa [2]) to refer
to MMS as the “ADT approach to language definition.”
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Functional

F [[t]] : Int
F [[i]] = i
F [[−e]] = −F [[e]]

F [[t]] : Sto→ Int× Sto
F [[i]]σ = (i, σ)
F [[−e]]σ = let (v, σ′)=F [[e]]σ

in (−v, σ′)

Modular Monadic

M[[t]] : Id Int
M[[i]] = η(i)
M[[−e]] =M[[e]] � λv.η(−v)

M[[t]] : St Int
M[[i]] = η(i)
M[[−e]] =M[[e]] � λv.η(−v)

Fig. 3. Program Abstraction via Modular Monadic Semantics. When the functional
definition (left column, top row) is re-interpreted in a different type (left column,
bottom row), the text of its definition changes radically. In the MMS setting (right
column), no such change is required.

Let us consider standard functional-style language definitions and why they
are representation-dependent. Consider the left column in Figure 3; it gives
functional-style definitions for a simple expression language Exp with constants
and negation. Note that the two functional semantics, F [[−]], are defined in two
settings corresponding to the identity and state monads. Both definitions of
F [[−]] are very representation-dependent—the very text of the definitions must
be completely rewritten when the semantic setting changes. In contrast, MMS
semantic equations (M[[−]] in the right column of Figure 3) are free from the
details of the underlying denotation because the monadic unit and bind oper-
ations handle any extra computational “stuff” (stores, environments, continua-
tions, etc.). Since negation does not use any of this data, the same equations for
M[[−]] define Exp for all monads!

4 State Monads and Their Axiomatization

State monads are monads that capture the notion of computation associated
with imperative programs. This section introduces the axiomatization for state
monads. First, the appropriate signature is defined (state monad structures), and
then the state monad axioms are given as equations on this signature. Theorem 1
shows how state monads may be created, and Theorem 2 demonstrates that any
monad transformer (according to Liang’s definition [14,13]) preserves imperative
behavior. Lemma 1 provides a convenient generalization of the state monad
axioms.

State Monad Structure. The quintuple (M, η, 	, u, g, τ) is a state monad
structure when: (M, η, 	) is a monad with operations unit η : α → Mα and
bind 	 : Mα → (α → Mβ) → Mβ, and additional operations on τ update
u : (τ → τ) → M() and get g : Mτ . We will refer to a state monad structure
(M, η, 	, u, g, τ) simply as M if the associated operations and state type τ are
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clear from context. Please note that a single monad (M, η, 	) may have multiple
state effects, each corresponding to multiple state monad structures.

State Monad Axiomatization. Let M = (M, η, 	, u, g, τ) be a state monad
structure. M is a state monad if the following equations hold for any f, g : τ → τ ,

u f � λ .u g = u (g ◦ f) (sequencing)
g � λσ0.g � λσ1.η(σ0, σ1) = g � λσ.η(σ, σ) (get-get)

g � λσ0.u f � λ .g � λσ1.η(σ0, σ1) = g � λσ.u f � λ .η(σ, fσ) (get-update-get)

Axiom (sequencing) shows how updating by f and then updating by g is
the same as just updating by their composition (g ◦ f). Axiom (get-get) requires
that performing two g operations in succession retrieves precisely the same value.
Axiom (get-update-get) states that retrieving the state before and after updating
with f is the same as retrieving the state before and applying f directly.

Theorem 1 shows that a state monad may be created from any monad through
the application of the state monad transformer. Theorem 2 shows that the monad
resulting from a monad transformer application to a state monad (i.e., one obey-
ing the state monad axioms) will also obey the state monad axioms. Proofs of
both theorems appear in [7].

Theorem 1 (StateT creates a state monad). For any monad M, let monad
M′ = StateT stoM and also u : (sto → sto) → M′() and g : M′sto be the non-
proper morphisms added by (StateT sto). Then (M′, ηM′ , 	M′ , u, g, sto) is a state
monad.

Theorem 2 (Monad transformers preserve stateful behavior). For any
state monad M = (M, η, 	, u, g, sto) and monad transformer T (see Figure 2),
the following state monad structure is a state monad:

(T M, η′, 	′, (lift ◦ u), lift(g))

where η′, 	′, and lift are the monadic unit, bind, and lifting operations, respec-
tively, defined by T.

Lemma 1 states a number of properties of the g and u morphisms which will be
useful later in the case study of Section 6.

Lemma 1. Let (M, 	, η, u, g, τ) be a state monad and getloc(x) = g � λσ.η(σ x)
(getloc(x) reads location x). For any F : τ × τ → Ma and Δ : τ → τ :

g � λσ.g � λσ′.F(σ, σ′) = g � λσ.g � λσ′.F(σ, σ) (a)

g � λσ.uΔ � λ .g � λσ′.F(σ, σ′) = g � λσ.uΔ � λ .F(σ,Δσ) (b)

u[x �→ v] � λ .getloc(x) = u[x �→ v] � λ .η(v) (c)

5 Formalizing Observations

An observation is a computation which reads (and only reads!) data such as states
and environments, and then observes the truth or falsity of a relation. With OPS,
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one inserts observations within a computation to capture information about its
state or progress. In this way, they are rather reminiscent of the pre- and post-
conditions of Hoare semantics, and we formalize this intuition below in Section 6.
This section investigates the properties that must hold of a computation for it
to be considered an observation.

Obviously, observations must manifest no observable effects (e.g., changing
states, throwing exceptions, or calling continuations) or else they will affect the
computation being specified. This property—called innocence—requires that the
outcome of the computation being specified must be the same with or without in-
terspersed observations and is defined below. Secondly, observing a relation twice
in succession must yield the same truth value as observing a relation just once;
this property is called idempotence below. Finally, the order in which two succes-
sive observations should be irrelevant. This property is called non-interference
below.

An M-computation ϕ is innocent, if, and only if, for all M-computations γ,

ϕ 	 λ . γ = γ 	 λv. ϕ 	 λ . η v = γ

This says that the effects manifested by ϕ are irrelevant to γ and may be dis-
carded. Computations ϕ and γ are non-interfering (written ϕ # γ) means:

ϕ 	 λv.γ 	 λw.η(v, w) = γ 	 λw.ϕ 	 λv.η(v, w)

If ϕ#γ, then their order is of no consequence. The relation # is clearly symmet-
ric. Lastly, a computation ϕ is idempotent if, and only if,

ϕ 	 λv.ϕ 	 λw.η(v, w) = ϕ 	 λw.η(w,w)

That is, successive ϕ are identical to a single ϕ. The following lemma shows
that idempotence may be used in a more general setting. A similar result for
non-interference (not shown) holds by similar reasoning.

Lemma 2. If ϕ : Mα is idempotent and f : α× α → Mβ, then

ϕ 	 λv.ϕ 	 λw.f(v, w) = ϕ 	 λw.f(w,w)

Proof. Applying the function “	f” to both sides of the idempotence definition
and using the associative and left-unit monad laws yields:

(ϕ 	 λv.ϕ 	 λw.η(v, w)) 	 f = ϕ 	 λv.ϕ 	 λw.(η(v, w) 	 f)
= ϕ 	 λv.ϕ 	 λw.f(v, w)

(ϕ 	 λw.η(w,w)) 	 f = ϕ 	 λw.(η(w,w) 	 f)
= ϕ 	 λw.f(w,w)

+,

Notice that stateful computation can easily lose innocence:

g �= u[λl.l + 1] 	 λ .g, and g �= g 	 λσ.u[λl.l + 1] 	 λ .η(σ)
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Continuation-manipulating computations like callcc (“call with current con-
tinuation”) can also lose innocence, because they can jump to an arbitrary con-
tinuation κ0:

η(5) �= η(5) 	 λv.(callcc λκ.κ07) 	 λ .η(v)

If Ω produces an error or is non-terminating, then it is not innocent:

η(5) �= η(5) 	 λv.Ω 	 λ .η(v) = Ω,

Examples of innocent computations. Some computations are always inno-
cent. For example, any computation constructed from an environment monad’s
“read” operators (e.g., rdEnv), an environment monad’s “in” operators (e.g.,
inEnv, assuming its argument are innocent), or from the “get” operators of a
state monad (e.g., g) are always innocent. Unit computations (such as η(x), for
any x) are also always innocent. Knowing that a computation is innocent is use-
ful in the proofs developed below, not only because an innocent computation
commutes with any other computation, but because it can be also be added to
any computation without effect. That is, for any arbitrary computations ϕ1, ϕ2

and innocent computation Υ ,

ϕ1 	 λv.ϕ2 = Υ 	 λx.ϕ1 	 λv.(Υ 	 λy.ϕ2)

The values x and y computed by Υ can be used as snapshots to characterize the
“before” and “after” behavior of ϕ1 just as the states σ0 and σ1 computed by g
were used in Equation 3.

Are innocent computations “pure”? A similar, but less general, notion to
innocence is purity (attributed sometimes, apparently erroneously [18], to Moggi
although the origins of the term are unclear). An M-computation ϕ is pure if,
and only if, ∃v.ϕ = ηM(v). An innocent computation may be seen as “pure in
any context.” Consider the (innocent, but not pure) computation g. It is not the
case that ∃v.g = ηM(v), because g will return a different state depending on the
context in which it occurs.

Three operations are used with observations. The first of these, ITE : M prop×
M(τ )×M(τ )→ M(τ ), defines an observational version of if-then-else, while the last
two, AND,⇒: M(prop)×M(prop)→M(prop), are computational liftings of proposi-
tional connectives. These functions are defined as:

ITE(θ, u, v) = θ 	 λtest.if test then u else v

θ1 AND θ2 = θ1 	 λp1.θ2 	 λp2.η(p1 ∧ p2)
θ1 ⇒ θ2 = θ1 	 λp1.θ2 	 λp2.η(p1 ⊃ p2)

Here, ∧, ¬, and ⊃ are the ordinary propositional connectives on prop with the
usual truth table definitions. The AND connective could be written using “short-
circuit” evaluation so that it would not evaluate its second argument when the
first produces ff. However, AND is intended to be applied only to innocent com-
putations and its “termination behavior” on that restricted domain is identical
to a short-circuiting definition. Lemma 3 is a property of ITE used in Section 6.
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Lemma 3. ITE(θ, x, y) 	 f = ITE(θ, x 	 f, y 	 f) for θ : M prop.

Proof of Lemma 3.

ITE(θ, x, y) � f = (θ � λβ. if β then x else y) � f

= θ � (λβ.(if β then x else y) � f)

= θ � (λβ. if β then x � f else y � f)

= ITE(θ, x � f, y � f)

+,

6 A Case Study in OPS: Hoare Logic Embedding

In this section, we show how OPS may be used to derive a programming logic for
the simple imperative language with loops from its state-monadic denotational
semantics. The programming logic developed here is the familiar axiomatic se-
mantics of Hoare [9]. The soundness of the derived logic relies entirely on proper-
ties of monads and the state monad transformer; specifically, these are the state
monad creation and preservation theorems (Theorems 1 and 2). These proper-
ties are key to the proof abstraction technique presented in this paper because
they allow the logic to be interpreted soundly in any layered monad constructed
with the state monad transformer.

First, we provide an overview of the syntax, semantics, and programming logic
for simple imperative language with loops. Then, we develop the embedding
of Hoare logic within OPS, and here is the first use of observations to model
assertions (e.g., {x = 0}). The main result, Theorem 3, states that the rules of
Hoare logic may be derived from the observational embedding of Hoare triples
within any state-monadic semantics [[−]].

Syntax, Semantics, & Logic of the While Language. Figure 4 presents
the syntax of the while language L and its programming logic. In most respects,
it is entirely conventional, and it is expected that the reader has seen such
definitions many times. Hoare’s original logic [9], which is considered here, has a
simple assertion logic, amounting to a quantifier-free logic with a single predicate
≤. For the sake of simplicity, we identify boolean expressions with assertions,
and place them in the same syntactic class B.

Figure 5 presents an MMS definition for L defined for any state monad. It is
entirely conventional, except that the meaning of booleans is defined in terms of
the observational embedding of assertions. The assertion embedding -−. is the
usual definition of boolean expressions.

Innocence, Non-interference, & Idempotence of [[e]] and -P .. It is nec-
essary to demonstrate that the derivation of Hoare logic (presented below) is
sound and the proof of this (in Theorem 3) relies on the interaction properties
from Section 5 (namely, innocence, non-interference, and idempotence) hold for
the assertion embedding and expression semantics of Figure 5; Lemma 4 shows
just that.
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(Values) V = () + Int + prop
(Language) L ::= C | E | B
(Assertions) B ::= true | false | E leq E | B andB | notB
(Expressions) e ∈ E ::= Var | Int | −E | E+E
(Commands) c ∈ C ::= skip | Var:=E | C ; C | if B then C else C | while B do C
(Triples) T ::= {B} C {B}

{P} skip {P}
(Skip)

{P [x/e]} x:=e {P}
(Assign)

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

(Seq)

{P and b} c1 {Q} {P and (not b)} c2 {Q}
{P} if b then c1 else c2 {Q}

(Cond)

{P and b} c {P}
{P} while b do c {P and (not b)}

(Iter)

P ′ ⊃ P {P} c {Q} Q ⊃ Q′

{P ′} c {Q′}
(Weaken)

Fig. 4. Abstract Syntax & Inference rules for Simple Imperative Language. Lower case
latin letters e and c typically refer to expressions and commands, respectively.

Lemma 4. Let e, e′ ∈ E and P, P ′ ∈ B. Then, [[e]] and -P . are innocent and
idempotent, and [[e]]#[[e′]], [[e]]#-P ., and -P .#-P ′..

Lemma 4 follows directly from Axiom (get-get) by straightforward structural
induction on the structure of terms.

Embedding Hoare Logic within Monadic Semantics. This section de-
scribes how Hoare logic may be interpreted within the state-monadic semantics
of Figure 5. First, triples (i.e., “{P} c {Q}”) are interpreted as particular com-
putations, and then their satisfaction is defined as particular equations between
computations. We extend the assertion embedding to triples so that:

-{P} c {Q}. = -P . 	 λpre.[[c]] 	 λ .-Q. 	 λpost.η(pre ⊃ post)

Triple satisfaction, written “|= {P} c {Q},” is defined when:

-{P} c {Q}. = [[c]] 	 λ .η(tt)

We also define the satisfaction of an implication “|= P ⊃ Q” as the following
equation:

(-P . ⇒ -Q.) = η(tt)

We now have the tools to derive the inference rules from Figure 4 from the
semantics in Figure 5. Each hypothesis and conclusion gives rise to an inter-
pretation in the semantics via the satisfaction predicate |= {P} c {Q} and the
observational implication ⇒ from Section 5. Soundness for the Hoare logic em-
bedding is what one would expect: an inference rule from Figure 4 with hypothe-
ses {hyp0, . . . , hypn} and conclusion c is observationally sound with respect to a
state monad semantics, if, whenever each |= hypi holds, so does |= c.
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Assertion Embedding:

�−� : B → M(prop)
�true� = η(tt)
�false� = η(ff)

�e1 leq e2� = [[e1]] � λv1.[[e2]] � λv2.η(v1 ≤ v2)
�not b� = �b� � λβ.η(¬β)
�b1 and b2� = �b1� AND �b2�

State-monadic Semantics:

[[−]] : L → MV
[[i]] = ηi
[[x]] = getloc(x)
[[b]] = �b�

[[−e]] = [[e]] � λv.η(−v)
[[e0 + e1]] = [[e0]] � λv0.[[e1]] � λv1.η(v0 + v1)
[[skip]] = η ()
[[c1 ; c2]] = [[c1]] � λ .[[c2]]
[[x:=e]] = [[e]] � λv.u[x �→ v]

[[if b then c1 else c2]] = [[b]] � λβ.if β then [[c1]] else [[c2]]
[[while b do c]] = fix(unwind [[b]] [[c]])

unwind : Mprop→ M()→ M()→ M()
unwind γb γc ϕ = γb � λβ.if β then (γc � λ .ϕ) else η()

Fig. 5. Assertion Embedding �−� and State-monadic Semantics [[−]] of L. Both the
embedding and semantics are defined for any state monad (M, η, �, u, g,Var→Int).

Lemma 5 is a substitution lemma for assertions. Below in the statement of
Lemma 5, we distinguish numbers from numerals with an underscore “ ”; that
is, v ∈ E is the numeral corresponding to the number v. Lemma 5 follows by
straightforward structural induction.

Lemma 5 (Substitution Lemma for Assertions). For expression e ∈ E,
assertion P ∈ B, and function f : Int → prop → Mα,

[[e]] 	 λv.-P [x/e]. 	 (f v) = [[e]] 	 λv.-P [x/v]. 	 (f v) (a)
u[x �→ v] 	 λ .-P . = -P [x/v]. 	 λcond.u[x �→ v] 	 λ .η(cond) (b)

Derivation of Inference Rules. This section states the observational sound-
ness of the Hoare logic embedding presented above in Theorem 3 and presents
part of its proof.

Theorem 3 (-−. is observationally sound). The inference rules of Hoare
logic are observationally sound with respect to any state-monadic semantics [[−]] :

L → MV .

The proof of Theorem 3 proceeds by structural induction on the inference rules
using straightforward equational reasoning. Each case in the proof depends on
properties of effects developed above; namely, these are innocence, idempotence
and non-interference. The cases for the Skip, Assign and Weaken rules are pre-
sented below. The cases for Seq and Cond are similar to those below while the
Iter rule follows by fixed-point induction; lack of space prohibits presentation of
their proofs here.
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Case: Skip Rule.

-{P} skip {P}.
= -P . 	 λpre. [[skip]] 	 λ .-P . 	 λpost. η(pre ⊃ post)

{ defn. [[skip]] }
= -P . 	 λpre. η() 	 λ .-P . 	 λpost. η(pre ⊃ post)

{ innocence of η() }
= -P . 	 λpre. -P . 	 λpost. η(pre ⊃ post)

{ �P
 is idempotent, Lemma 4 }
= -P . 	 λp. η(p ⊃ p)

{ logically valid }
= -P . 	 λp. η tt

{ innocence of �P
 & η() }
= η() 	 λ . η tt = [[skip]] 	 λ .ηtt

Case: Assign Rule.

-{P [x/e]} x:=e {P}.
= -P [x/e]. 	 λpre.[[x:=e]] 	 λ .-P . 	 λpost.η(pre ⊃ post)

{defn. [[x:=e]]}
= -P [x/e]. 	 λpre.[[e]] 	 λv.u[x �→ v] 	 λ .-P . 	 λpost.η(pre ⊃ post)

{[[e]]#�P
, Lemma 4}
= [[e]] 	 λv.-P [x/e]. 	 λpre.u[x �→ v] 	 λ .-P . 	 λpost.η(pre ⊃ post)

{Lemma 5(a)}
= [[e]] 	 λv.-P [x/v]. 	 λpre.u[x �→ v] 	 λ .-P . 	 λpost.η(pre ⊃ post)

{Lemma 5(b)}
= [[e]] 	 λv.-P [x/v]. 	 λpre.-P [x/v]. 	 λpost.u[x �→ v] 	 λ .η(pre ⊃ post)

{ idempotence of �P [x/v]
, Lemma 4}
= [[e]] 	 λv.-P [x/v]. 	 λpost.u[x �→ v] 	 λ .η(post ⊃ post)

{ logical validity }
= [[e]] 	 λv.-P [x/v]. 	 λpost.u[x �→ v] 	 λ .η(tt)

{ innocence of �P [x/v]
, Lemma 4 }
= [[e]] 	 λv.u[x �→ v] 	 λ .η(tt)
= [[x:=e]] 	 λ .η(tt)

Case: Weakening Rule. Assume S ⇒ P and |= {P} c {Q}.
To show: |= {S} c {Q}. Rewriting the hypotheses of the inference rule in obser-
vational form:

-S. 	 λs.-P . 	 λp.η(s ⊃ p) = η(tt)
-P . 	 λp.[[c]] 	 λ .-Q. 	 λq.η(p ⊃ q) = [[c]] 	 λ .η(tt)

From the innocence of S and because (tt ∧ x) ≡ x:

-S. 	 λs.-P . 	 λp.[[c]] 	 λ .-Q. 	 λq.η(s ⊃ p ∧ p ⊃ q) = [[c]] 	 λ .η(tt)

Since (s ⊃ p ∧ p ⊃ q) = tt and (s ⊃ p ∧ p ⊃ q) ⊃ (s ⊃ q):

-S. 	 λs.-P . 	 λp.[[c]] 	 λ .-Q. 	 λq.η(s ⊃ q) = [[c]] 	 λ .η(tt)
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By the innocence of -P . (and because “p” is a dummy variable like “ ”):

-S. 	 λs.[[c]] 	 λ .-Q. 	 λq.η(s ⊃ q) = [[c]] 	 λ .η(tt)

∴ |= {S} c {Q} +,

7 Related Work

Structuring denotational semantics with monads and monad transformers was
originally proposed by Moggi [21]. There are two complementary applications of
monads in denotational semantics. The first is to use monads to provide a precise
typing for effects in a language, while the second uses monads for modularity
via monadic encapsulation of the underlying denotational structure. MMS fits
squarely in this second category. Hudak, Liang, and Jones [14] and Espinosa [2]
use monads and monad transformers to create modular, extensible interpreters.
Recent promising work in categorical semantics [25,4] investigates more general
approaches to combining monads than with monad transformers, although the
cases for certain computational monads (chiefly, the continuation monad) are
apparently still open problems as of this writing.

Modularity in programming language semantics is provided by a number of se-
mantic frameworks including action semantics [22], high-level semantics [12], and
modular monadic semantics [14,13]. Modularity in these frameworks stems from
their organization according to a notion of program abstraction called separabil-
ity [12]: they all provide a mechanism for separating the denotational description
of a language (e.g., semantic equations) from its underlying denotational repre-
sentation. Modularity—or rather the separability principle underlying it—can be
at odds with program verification, however, because program specifications (i.e.,
predicates) are typically written with respect to a fixed denotational structure.

Liang [13] addresses the question of reasoning about MMS definitions for mon-
ads involving a single environment. He axiomatizes the environment operators
rdEnv and inEnv, and shows that these axioms hold in any monad constructed
with standard monad transformers (with a weak restriction on the order of trans-
former application—cf. Section 3). Liang’s work provided an early inspiration for
this one, but OPS is more powerful in a number of respects. Firstly, observa-
tions allow specifications to make finer-grained distinctions based on predicates
applied to semantic data internal to the underlying monad. The work developed
in [13] only allows equations between terms in the signature 	 (bind), η, rdEnv,
and inEnv—no statements about the computed environments are possible. Sec-
ondly, observations may characterize relationships between any data internal to
the underlying monad as well.

OPS was developed to verify a particular form of MMS definition, namely,
modular compilers [8,6]. Modular compilation is a compiler construction tech-
nique allowing the assembly of compilers for high-level programming languages
from reusable compiler building blocks (RCBBs). Each RCBB is, in fact, a de-
notational language definition factored by a monad transformer. Modular com-
piler verification involves specifying the behavior and interaction of multiple,
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“layered” effects, instead of just a single state as is presented here. The
non-interference property for observations has also been used to characterize
“non-interference” information security [5] by controlling “inter-layer” interac-
tion between security levels [7].

OPS is reminiscent of programming logics such as specification and Floyd-
Hoare logics [26,23,15] with observations playing a similar role to assertions (e.g.,
“{x = 0}”). Evaluation logic [24] is a typed, modal logic extending the computa-
tional lambda calculus [17]. It is equipped with “evaluation” modalities signifying
such properties as “if E evaluates to x, then φ(x) holds”. Moggi sketches how
a number of programming logics, including Hoare logic, may be embedded into
evaluation logic [19] and provides a similar, but less general, axiomatization of
state. Führmann [3] introduces classifications for monadic effects called “effec-
toids”. Among these are “discardable,” “copyable” and “disjoint” effectoids that
correspond closely to innocent, idempotent, and non-interfering computations,
respectively. Schröder and Mossakowski [27] define a similar notion to discard-
able/innocent as well called “side-effect free”. Instead of using observations to
access intermediate data from a computation, their work incorporates a modality
rather like the aforementioned evaluation logic modality to interpret Hoare logic
monadically. The present work differs from theirs also in that here all monads are
layered (i.e., produced by applications of monad transformers). Here, the mon-
ads in which the Hoare logic embedding is valid are determined by construction
alone; this is valuable considering their potential complexity (see Figure 1).

Launchbury and Sabry [11] produced an axiomatization of monadic state,
later used by Ariola and Sabry [1] to prove the correctness of an implementation
of monadic state. Their axioms fulfill a similar role to the state monad axioms
described in Section 4. They introduce an observation-like construct for describ-
ing the shape of the store, sto σ c, where σ is a store and c is a computation to
be executed in σ. Observations may be seen as generalizing this sto by relating
any data (states, environments, etc.) internal to the monad.

Kleene algebras with tests (KAT) are two-sorted algebraic structures which
form an equational system for reasoning about programs [10]. A KAT has one
sort for “programs” and another sort for “tests.” These tests play a similar
role to observations in OPS. Non-interference and idempotence properties of
observations correspond to multiplicative commutation and idempotence of tests,
while innocence corresponds to the commutation of non-test elements. OPS and
KAT are both equational systems, although OPS, being embedded in the host
language semantics, is less abstract in some sense. An interesting open question
is whether OPS may form a general class of computational models of KATs,
thereby providing a more compact algebraic way of reasoning with observations.

8 Concluding Remarks

OPS is a powerful and expressive specification technique for reasoning about
modular definitions without sacrificing modularity. Semantic frameworks which
promote modularity (like the MMS framework considered here) do so at a cost:
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reasoning about such definitions is complicated by the separability principle used
to gain modularity in the first place. In the case of MMS, the source of this diffi-
culty lies in the disparity between the incompatible settings (i.e., computational
and value, respectively) of programs and specifications. The solution presented
here resolves this disparity by making specifications compatible with programs
through the lifting of predicates to the computational level.

Monad transformers are well known as a structure for program abstraction and
this article demonstrates how they give rise to a corresponding notion of proof
abstraction as well. With OPS, program proofs hold in any monad in which
the program itself makes sense. If an MMS program is written for a particular
signature (i.e., those operators added by monad transformers) and behavior-
preserving liftings exist for that signature, then the program makes sense—that
is, after all, what “liftings exist” means. It is not surprising that if a monadic in-
terface adequately captures the behavior of that same signature, then a program
proof relying on that interface should hold as well.

OPS was originally developed for verifying modular compilers [6], and its
application within formal methods and high-assurance software development re-
mains an active area of research. To that end, establishing connections
between OPS and other verification formalisms—programming logics such as
evaluation logic [20] and semantics-based reasoning techniques such as logical
relations [16]—is expected to yield useful results.
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Towards Extensional Semantics for Effect Analyses
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Abstract. We give an elementary semantics to an effect system, tracking
read and write effects by using relations over a standard extensional se-
mantics for the original language. The semantics establishes the soundness
of both the analysis and its use in effect-based program transformations.

1 Introduction

Many analyses and logics for imperative programs are concerned with establish-
ing whether particular mutable variables (or references or heap cells or regions)
may be read or written by a phrase. For example, the equivalence of while-
programs

C ; if B then C’ else C’’ = if B then (C;C’) else (C;C’’)

is valid when B does not read any variable which C might write. Hoare-style
programming logics often have rules with side-conditions on possibly-read and
possibly-written variable sets, and reasoning about concurrent processes is dra-
matically simplified if one can establish that none of them may write a variable
which another may read.1

Effect systems, first introduced by Gifford and Lucassen [8,11], are static anal-
yses that compute upper bounds on the possible side-effects of computations.
The literature contains many effect systems that analyse which storage cells may
be read and which storage cells may be written (as well as many other proper-
ties), but no truly satisfactory account of the semantics of this information, or of
the uses to which it may be put. Note that because effect systems overestimate
the possible side-effects of expressions, the information they capture is of the
form that particular variables will definitely not be read or will definitely not be
written. But what does that mean?

Thinking operationally, it may seem entirely obvious what is meant by saying
that a variable X will not be read (written) by a command C, viz. no execution
trace of C contains a read (resp. write) operation to X . But, as we have argued
before [3,6,4], such intensional interpretations of program properties are over-
restrictive, cannot be interpreted in a standard semantics, do not behave well
with respect to program equivalence or contextual reasoning and are hard to

1 Though here we restrict attention, in an essential manner, to sequential programs.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 114–130, 2006.
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maintain during transformations. Thus we seek extensional properties that are
more liberal than the intensional ones yet still validate the transformations or
reasoning principles we wish to apply.

In the case of not writing a variable, a naive extensional interpretation seems
clear: a command C does not observably write the variable X if it leaves the
value of X unchanged:

∀S, S′. C, S ⇓ S′ =⇒ S′(X) = S(X)

Note that this definition places no constraint on diverging executions or the value
of X at intermediate states. Operationally, C may read and write X many times,
so long as it always restores the original value before terminating. Furthermore,
the definition is clearly closed under behavioural equivalence. If we have no non-
termination and just two integer variables, X and Y , and the denotation of C
is [[C]] : Z × Z → Z × Z then our simple-minded definition of what it means for
C not to write X can be expressed denotationally as

∃f2 : Z × Z → Z.∀X,Y. [[C]](X,Y ) = (X, f2(X,Y ))

which is the same as saying [[C]] = 〈π1, f2〉.
The property of neither reading nor writing X , i.e. of being observationally

pure in X is also not hard to formalize extensionally:

∀S, S′, n. C, S ⇓ S′ ⇐⇒ C, S[X �→ n] ⇓ S′[X �→ n]

Alternatively ∃f2 : Z → Z.∀X,Y. [[C]](X,Y ) = (X, f2(Y )), which is the same as
saying [[C]] = 1 × f2.

The property of not observably reading X is rather more subtle, since X may,
or may not, be written. We want to say that the final values of all the other
variables are independent of the initial value of X , but the final value of X itself
is either a function of the other variables or is the initial value of X :

∃f1 : Z → B, f2, f3 : Z → Z.∀X,Y. [[C]](X,Y ) = (f1(Y ) ⊃ X | f2(Y ), f3(Y ))

This is clearly a more complex property than the others. Another way to think
of it is that the final values of the variables other than X are functions of the
initial values of those variables and that for each value of those other variables,
the (curried) function mapping the initial value of X to its final value is ei-
ther constant or the identity. The tricky nature of the ‘does not read’ property
also shows up if one tries to define a family of monads in a synthetic, rather
than an analytic fashion (as in Tolmach’s work [20]): neither reading nor writ-
ing corresponds to the identity monad; not writing corresponds to the reader
(environment) monad; but there is no simple definition of a ‘writer’ monad.

Our basic approach to the soundness of static analyses and optimizing trans-
formations is to interpret the program properties (which may be expressed as
points in an abstract domain, or as non-standard types) as binary relations
over a standard, non-instrumented (operational or denotational) semantics of
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the language. We have previously [3] described how such an extensional rela-
tional interpretation of static analyses allows one both to express constancy and
dependency properties for simple imperative programs, and to reason about the
transformations they enable. But the non-parametric relations used in that work
turn out to be insufficient to admit a compositional, generic translation of per-
haps the simplest static analysis there is: the obvious inductive definition of
possibly-read and possibly-written variable sets for while-programs.

In earlier, operationally-based, work [6] we expressed the meaning of some
simple global (i.e. treating the whole store monolithically) effects using sets of
cotermination tests (pairs of contexts) written explicitly in the language, but
those definitions were very unwieldy and phrased in a way that would not gen-
eralize easily to other types. Here we will show how reading, writing and allocat-
ing properties for a higher-order language with state can be elegantly captured
using parametric logical relations over a simple denotational semantics for the
original language. This new interpretation of effects is dramatically slicker and
more compelling than previous ones.

1.1 Relations

We just recall some basic facts and notation. A (binary) relation R on a set A is
a subset of A×A. If R is a relation on A and Q a relation on B, then we define
relations on Cartesian products and function spaces by

R×Q = {((a, b), (a′, b′)) ∈ (A×B) × (A×B) | (a, a′) ∈ R, (b, b′) ∈ Q}
R → Q = {(f, f ′) ∈ (A → B) × (A → B) | ∀(a, a′) ∈ R. (f a, f ′ a′) ∈ Q}

A binary relation on a set is a partial equivalence relation (PER) if it is symmetric
and transitive. The set of PERs on a set is closed under arbitrary intersections
and disjoint unions. If R and Q are PERs, so are R → Q and R×Q. Write ΔA

for the diagonal relation {(a, a) | a ∈ A}, and a : R for (a, a) ∈ R.

1.2 The Basic Idea

Our starting point is the following simple, yet striking, observation, which seems
not to have been made before:

Lemma 1. For total commands operating on two integer variables, as above,

1. The property of not observably writing X is equivalent to

∀R ⊆ Δ. [[C]] : R×Δ → R×Δ

i.e. preserving all relations less than or equal to the identity on X.
2. The property of neither observably reading nor observably writing X is equiv-

alent to
∀R. [[C]] : R×Δ → R×Δ

i.e. preserving all relations on X.
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3. The property of not reading X is equivalent to

∀R ⊇ Δ. [[C]] : R×Δ → R×Δ

i.e. preserving all relations greater than or equal to the identity on X.

Proof. We write f for [[C]] and just consider the last case. Assume f(X,Y ) =
(f1(Y ) =⇒ X | f2(Y ), f3(Y )) and R ⊇ Δ. Then if (X,X ′) ∈ R and (Y, Y ′) ∈ Δ
so Y = Y ′, we have

(f(X,Y ), f(X ′, Y ′)) = ((f1(Y ) =⇒ X | f2(Y ), f3(Y )),
(f1(Y ) =⇒ X ′ | f2(Y ), f3(Y )))

Clearly (f3(Y ), f3(Y )) ∈ Δ. In the first component, if f1(Y ) = true then we get
(X,X ′) ∈ R and if f1(Y ) = false we get (f2(Y ), f2(Y )) ∈ Δ ⊆ R so we’re done.

Going the other way, preservation of T × Δ deals with the independence of
the second component. In the first component we need to show that for each Y ,
π1f(−, Y ) : Z → Z is uniformly either constant or the identity. Pick any two dis-
tinct elements X ,X ′ and let R = Δ∪{(X,X ′)}, which containsΔ and is therefore
preserved by the first component of f . Thus (π1f(X,Y ), π1f(X ′, Y )) ∈ R means
either π1f(X,Y ) = π1f(X ′, Y ) or π1f(X,Y ) = X and π1f(X ′, Y ) = X ′. +,

(Note that preservation of relations is closed under unions, so it actually suffices
to consider singleton relations in the first two cases and singleton extensions of
the identity relation in the last case.)

In the next section we develop the result above to give a semantics for a simple
effect system for a higher-order language with global variables, in the process
explaining where the faintly mysterious bounded quantification really ‘comes
from’. The language and effect system is purposefully kept very minimal, so we
may explore the key idea without getting bogged down in too much auxiliary
detail.

2 Effects for Global Store

2.1 Base Language

We consider a monadically-typed, normalizing, call-by-value lambda calculus
with a collection of global integer references. The use of monadic types, making
an explicit distinction between values and computations, simplifies the presenta-
tion of the effect system and cleans up the equational theory of the language. A
more conventionally-typed impure calculus may be translated into the monadic
one via the usual ‘call-by-value translation’ [5], and this extends to the usual
style of presenting effect systems in which every judgement has an effect, and
function arrows are annotated with ‘latent effects’ [21].

We assume a finite set L of global variable names, ranged over by �, and define
value types A, computation types TA and contexts Γ as follows:

A,B := unit | int | bool | A×B | A → TB

Γ := x1 : A1, . . . , xn : An
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Γ 
 n : int Γ 
 b : bool Γ 
 () : unit Γ, x : A 
 x : A

Γ 
 V1 : int Γ 
 V2 : int

Γ 
 V1 + V2 : int

Γ 
 V1 : int Γ 
 V2 : int

Γ 
 V1 > V2 : bool

Γ 
 V1 : A Γ 
 V2 : B

Γ 
 (V1, V2) : A×B

Γ 
 V : A1 × A2

Γ 
 πi V : Ai

Γ, x : A 
M : TB

Γ 
 λx : A.M : A→ TB

Γ 
 V1 : A→ TB Γ 
 V2 : A

Γ 
 V1 V2 : TB

Γ 
 V : A

Γ 
 val V : TA

Γ 
M : TA Γ, x : A 
 N : TB

Γ 
 let x⇐M inN : TB

Γ 
 V : bool Γ 
M : TA Γ 
 N : TA

Γ 
 if V then M else N : TA

Γ 
 read(�) : Tint

Γ 
 V : int

Γ 
 write(�, V ) : Tunit

Fig. 1. Simple computation type system

Note that variables are always given value types, as this is all we shall need
to interpret a CBV language. There are two forms of typing judgement: value
judgements Γ � V : A and computation judgements Γ � M : TA, defined induc-
tively by the rules in Figure 1. Note that the presence of types on lambda-bound
variables makes typing derivations unique and that addition and comparison
should be considered just representative primitive operations.

Since our simple language has no recursion, we can give it an elementary
denotational semantics in the category of sets and functions. Writing S for L →
Z, the semantics of types is as follows:

[[unit]] = 1 [[int]] = Z [[bool]] = B [[A×B]] = [[A]] × [[B]]

[[A → TB]] = [[A]] → [[TB]] [[TA]] = S → S × [[A]]

The interpretation of the computation type constructor is the usual state
monad. The meaning of contexts is given by [[x1 : A1, . . . , xn : An]] = [[A1]] ×
· · · × [[An]], and we can then give the semantics of judgements

[[Γ � V : A]] : [[Γ ]] → [[A]] and [[Γ � M : TA]] : [[Γ ]] → [[TA]]

inductively, though we omit the completely standard details here. The semantics
is adequate for the obvious operational semantics and ground contextual equiv-
alence (observing, say, the final boolean value produced by a closed program).

2.2 Effect System

We now present our effect analysis as a type system that refines the simple type
system by annotating the computation type constructor with information about
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X ≤ X

X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X ′ Y ≤ Y ′

X × Y ≤ X ′ × Y ′

X ′ ≤ X TεY ≤ Tε′Y
′

(X → TεY ) ≤ (X ′ → Tε′Y
′)

ε ⊆ ε′ X ≤ X ′

TεX ≤ Tε′X
′

Fig. 2. Subtyping refined types

whether a computation may read or write particular locations. Formally, define
refined value types X , computation types TεX and contexts Θ by

X,Y := unit | int | bool | X × Y | X → TεY

ε ⊆
⋃
�∈L

{r�, w�}

Θ := x1 : X1, . . . , xn : Xn

There is a subtyping relation on refined types, axiomatised in Figure 2. The
evident erasure map, U(·), takes refined types to simple types (and contexts) by
forgetting the effect annotations:

U(int) = int U(bool) = bool U(unit) = unit
U(X × Y ) = U(X) × U(Y )

U(X → TεY ) = U(X) → U(TεY )
U(TεX) = T (U(X))

U(x1 : X1, . . . , xn : Xn) = x1 : U(X1), . . . , xn : U(Xn)

Lemma 2. If X ≤ Y then U(X) = U(Y ), and similarly for computations. +,

The refined type assignment system is shown in Figure 3. Note that the subject
terms are the same (we still only have simple types on λ-bound variables).

Lemma 3. If Θ �V :X then U(Θ)� V : U(X), and similarly for computations.
+,

Note that the refined system doesn’t rule out any terms from the original lan-
guage. Define a map G(·) from simple types to refined types that adds the ‘top’
annotation

⋃
�∈L{r�, w�} to all computation types, and then

Lemma 4. If Γ � V : A then G(Γ ) � V : G(A) and similarly for computations.
+,

2.3 Semantics of Effects

The meanings of simple types are just sets, out of which we now carve the
meanings of refined types as subsets, together with a coarser notion of equality.
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Θ 
 n : int Θ 
 b : bool Θ 
 () : unit Θ, x : X 
 x : X

Θ 
 V1 : int Θ 
 V2 : int

Θ 
 V1 + V2 : int

Θ 
 V1 : int Θ 
 V2 : int

Θ 
 V1 > V2 : bool

Θ 
 V1 : X Θ 
 V2 : Y

Θ 
 (V1, V2) : X × Y

Θ 
 V : X1 ×X2

Θ 
 πi V : Xi

Θ, x : X 
M : TεY

Θ 
 λx : U(X).M : X → TεY

Θ 
 V1 : X → TεY Θ 
 V2 : X

Θ 
 V1 V2 : TεY

Θ 
 V : X

Θ 
 val V : T∅X

Θ 
M : TεX Θ, x : X 
 N : Tε′Y

Θ 
 let x⇐M inN : Tε∪ε′Y

Θ 
 V : bool Θ 
M : TεX Θ 
 N : TεX

Θ 
 if V then M else N : TεX

Θ 
 read(�) : T{r�}(int)

Θ 
 V : int

Θ 
 write(�, V ) : T{w�}(unit)

Θ 
 V : X X ≤ X ′

Θ 
 V : X ′

Θ 
M : TεX TεX ≤ Tε′X
′

Θ 
M : Tε′X
′

Fig. 3. Refined type system

More formally, the semantics of each refined type is a partial equivalence relation
on the semantics of its erasure, defined as follows:

[[X ]] ⊆ [[U(X)]] × [[U(X)]]

[[int]] = ΔZ [[bool]] = ΔB [[unit]] = Δ1

[[X × Y ]] = [[X ]] × [[Y ]]

[[X → TεY ]] = [[X ]] → [[TεY ]]

[[TεX ]] =
⋂

R∈Rε
R → R× [[X ]]

where Rε ⊆ P(S × S) is given by Rε =
⋂

e∈ε Re and for atomic effects e,
Re ⊆ P(S × S) is given by

Rr�
= {R | (s, s′) ∈ R =⇒ s � = s′ �}

Rw�
= {R | (s, s′) ∈ R =⇒ ∀n ∈ Z. (s[� �→ n], s′[� �→ n]) ∈ R}

Apart from the clause for computation types, this is a familiar-looking logical
relation. To understand the interpretation of effect annotations, note that the
first intersection is intersection of relations, whilst the second is an intersection
of sets of relations. Then for each ε there is a set Rε of relations on the state
that computations of type TεX have to preserve; the more possible effects occur
in ε, the fewer relations are preserved.
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Thus, for example, if ε is the empty set then Rε is the empty intersection,
i.e. all state relations. So [[T∅X ]] relates two computations m and m′ of type
[[T (U(X))]] if for all state relations R and pre-states s,s′ related by R, ms and
m′ s′ yield post-states related by R and values related by [[X ]], which is just what
one would expect the definition of observational purity to be from the discussion
in Section 1.2. A little more calculation shows that, if L = {x,y} then a state
relation R is in [[T{wx,wy,ry}(unit)]], the interpretation of commands not reading
x, just when it (is either empty or) factors as Rx×Δ with Rx ⊇ Δ, which again
matches the observation in the introduction. What is going on is even clearer if
one rephrases the RHS of the implication in the definition of Rr�

as

([[read(�)]] () s, [[read(�)]] () s′) ∈ R× [[int]]

and that of Rw�
as saying

([[write(�, V )]] () s, [[write(�, V ′)]] () s′) ∈ R× [[unit]]

for all V ,V ′ such that ([[V ]] (), [[V ′]] ()) ∈ [[int]]. The usual ‘logical’ relational
interpretation of a type can be understood as ‘preserving all the relations that
are preserved by all the operations on the type’ and the above shows how the
semantics of our refined types really does extend the usual notion: the refined
type is a subtype with only a subset of the original operations and thus will
preserve all relations that are preserved by that smaller set of operations.

We also extend the relational interpretation of refined types to refined contexts
in the natural way:

[[Θ]] ⊆ [[U(Θ)]] × [[U(Θ)]]
[[x1 : X1, . . . , xn : Xn]] = [[X1]] × · · · × [[Xn]]

Lemma 5. For any Θ, X and ε, all of [[Θ]], [[X ]] and [[TεX ]] are partial equiva-
lence relations. +,

The following sanity check says that the interpretation of a refined type with
the top effect annotation everywhere is just equality on the interpretation of its
erasure:

Lemma 6. For all A, [[G(A)]] = Δ[[A]]. +,

The following establishes semantic soundness for our subtyping relation:

Lemma 7. If X ≤ Y then [[X ]] ⊆ [[Y ]], and similarly for computation types. +,

And we can then show a ‘fundamental theorem’ establishing the soundness of
the effect analysis itself:

Theorem 1

1. If Θ � V : X, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � V : U(X)]] ρ, [[U(Θ) � V : U(X)]] ρ′) ∈ [[X ]]
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2. If Θ � M : TεX, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � M : T (U(X))]] ρ, [[U(Θ) � M : T (U(X))]] ρ′) ∈ [[TεX ]] +,

Because we have used standard technology (logical relations, PERs), the pattern
of what we have to prove here is obvious and the definitions are all set up so
that the proofs go through smoothly. Had we defined the semantics of effects in
some more special-purpose way (e.g. trying to work directly with the property
of being uniformly either constant or the identity), it could have been rather less
clear how to make everything extend smoothly to higher-order and how to deal
with combining effects in the let-rule.

2.4 Basic Equations

Before looking at effect-dependent equivalences, we note that the semantics vali-
dates all the usual equations of the computational metalanguage, including con-
gruence laws and β and η laws for products, function spaces, booleans and the
computation type constructor. We show some of these rules in Figure 4. Note
that the correctness of the basic congruence laws subsumes Theorem 1 and that,
rather subtly, we have made the reflexivity PER rule invertible. This is sound
because our effect annotations are purely descriptive (or extrinsic in Reynolds’s
terminology [17]) whereas the simple types are more conventionally prescriptive
(which Reynolds calls intrinsic). We actually regard the rules of Figure 3 as
abbreviations for a subset of the equational judgements of Figure 4; thus we can
allow the refined type of the conclusion of interesting equational rules (e.g. the
dead computation rule, to be presented shortly) to be different from (in particu-
lar, have a smaller effect than) the refined types in the assumptions. In practical
terms, this is important for allowing inferred effects to be improved locally as
transformations are performed, rather than having to periodically reanalyse the
whole program to obtain the best results.

3 Using Effect Information

More interesting equivalences are predicated on the effect information. The read-
set of an effect ε is denoted rds(ε) and defined as {� ∈ L | r� ∈ ε}. Likewise, the
write-set of an effect ε is denoted wrs(ε) and defined as {� ∈ L | w� ∈ ε}. The set
of locations mentioned in an effect is locs(ε) = rds(ε) ∪ wrs(ε). We make use of
these definitions in refined side-conditions for the effect-dependent equivalences,
presented in Figure 5.

The Dead Computation transformation allows the removal of a computation
producing an unused value, provided the effect of that computation is at most
reading (if the computation could write the store then its removal would generally
be unsound, as that write could be observed by the rest of the computation).

The Duplicated Computation transformation allows two evaluations of the
same computation to be replaced by one, provided that the observable reads and
observable writes of the computation are disjoint. Intuitively, the locations that
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PER rules (+ similar for computations):

Θ 
 V : X
============
Θ 
 V = V : X

Θ 
 V = V ′ : X

Θ 
 V ′ = V : X

Θ 
 V = V ′ : X Θ 
 V ′ = V ′′ : X

Θ 
 V = V ′′ : X

Θ 
 V = V ′ : X X ≤ X ′

Θ 
 V = V ′ : X ′

Congruence rules (extract):

Θ 
 V1 = V ′
1 : int Θ 
 V2 = V ′

2 : int

Θ 
 (V1 + V2) = (V ′
1 + V ′

2) : int

Θ 
 V = V ′ : X1 ×X2

Θ 
 πi V = πi V
′ : Xi

Θ, x : X 
M = M ′ : TεY

Θ 
 (λx : U(X).M) = (λx : U(X).M ′) : X → TεY

β rules (extract):

Θ, x : X 
M : TεY Θ 
 V : X

Θ 
 (λx : U(X).M) V = M [V/x] : TεY

Θ 
 V : X Θ, x : X 
M : TεY

Θ 
 let x⇐val V inM = M [V/x] : TεY

η rules (extract):

Θ 
 V : X → TεY

Θ 
 V = (λx : U(X).V x) : X → TεY

Θ 
M : TεX

Θ 
 (let x⇐M in val x) = M : TεX

Commuting conversions:

Θ 
M : Tε1Y Θ, y : Y 
 N : Tε2X Θ, x : X 
 P : Tε3Z

Θ 
 let x⇐ (let y⇐M inN) in P = let y⇐M in let x⇐N in P : Tε1∪ε2∪ε3Z

Fig. 4. Effect-independent equivalences

may be read on the second evaluation were not written during the first one, so
will have the same values. Hence the actual values written during the second
evaluation will be the same as were written during the first evaluation. Thus
both the final state and the computed value after the second evaluation will be
the same (equivalent) to the state and value after the first evaluation.

The Commuting Computations transformation allows the order of two
value-independent computations to be swapped provided that their write sets
are disjoint and neither may read a location that the other may write.

The Pure Lambda Hoist transformation allows a computation to be hoisted
out of a lambda abstraction (so it is performed once, rather than every time the
function is applied) provided that it is observably pure (and, of course, that it
does not depend on the function argument). This is not only useful, but also
interesting as an example of a transformation we did not manage to prove sound
in our earlier [6] work.
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Dead Computation:

Θ 
M : TεX Θ 
 N : Tε′Y
x �∈ Θ,wrs(ε) = ∅

Θ 
 let x⇐M inN = N : Tε′Y

Duplicated Computation:

Θ 
M : TεX Θ,x : X, y : X 
 N : Tε′Y
rds(ε) ∩ wrs(ε) = ∅

Θ 
 let x⇐M in let y⇐M inN
= let x⇐M inN [x/y]

: Tε∪ε′Y

Commuting Computations:

Θ 
M1 : Tε1X1 Θ 
M2 : Tε2X2 Θ, x1 : X1, x2 : X2 
 N : Tε′Y rds(ε1) ∩ wrs(ε2) = ∅
wrs(ε1) ∩ rds(ε2) = ∅
wrs(ε1) ∩ wrs(ε2) = ∅Θ 
 let x1⇐M1 in let x2⇐M2 inN

= let x2⇐M2 in let x1⇐M1 inN
: Tε1∪ε2∪ε′Y

Pure Lambda Hoist:

Θ 
M : T{}Z Θ, x : X, y : Z 
 N : TεY

Θ 
 val (λx : U(X).let y⇐M inN)
= let y⇐M in val (λx : U(X).N)

: T{}(X → TεY )

Fig. 5. Effect-dependent equivalences

The following Lemma states that a computation with effect ε cannot change
the state of locations outside wrs(ε). We write s =L s′ if for all � ∈ L, s(�) = s′(�).
Lemma 8 (No writes). Suppose Θ � M : TεX and (ρ, ρ) ∈ [[Θ]]. If [[Θ � M :
TεX ]] ρ s0 = (s1, x) then s0 =L\wrs(ε) s1.

Proof. Define a relation R = {(s, s) | s =L\wrs(ε) s0}. It is easy to see that R ∈
Rε, and clearly (s0, s0) ∈ R. Then applying Theorem 1 to M and (ρ, ρ) ∈ [[Θ]]
we can deduce that (s1, s1) ∈ R, so s1 =L\wrs(ε) s0. +,

Dually, running a computation with effect ε on states that differ only outside
rds(ε) makes an identical change to each state:

Lemma 9 (No reads). Suppose Θ � M : TεX and (ρ, ρ′) ∈ [[Θ]]. Let s0 and s′0
be two states such that s0 =rds(ε) s′0. If [[Θ � M : TεX ]] ρ s0 = (s1, x) and [[Θ �
M : TεX ]] ρ′ s′0 = (s′1, x′) then (x, x′) ∈ [[X ]] and for all � ∈ L, either s1(�) = s′1(�)
(locations are updated, identically), or s1(�) = s0(�) and s′1(�) = s′0(�) (locations
are left unchanged).

Proof. Define a relation R = {(s, s′) | ∀� ∈ L, s � = s′ � ∨ (s � = s0 � ∧ s′ � =
s′0 �)}. It is straightforward to check that R ∈ Rε, and that (s0, s

′
0) ∈ R. Then

applying Theorem 1 to M and (ρ, ρ′) ∈ [[Θ]] we can deduce that (s1, s
′
1) ∈ R and

(x, x′) ∈ [[X ]] and the result follows immediately. +,
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If U(Θ) � V : U(X) and U(Θ) � V ′ : U(X) then write Θ |= V = V ′ : X to mean
that for all (ρ, ρ′) ∈ [[Θ]]

([[U(Θ) � V : U(X)]] ρ, [[U(Θ) � V ′ : U(X)]] ρ′) ∈ [[X ]]

and similarly for computations.

Theorem 2. All of the equations shown in Figures 4 and 5 are soundly modelled
in the semantics:

– If Θ � V = V ′ : X then Θ |= V = V ′ : X.
– If Θ � M = M ′ : TεX then Θ |= M = M ′ : TεX.

Proof. We present proofs for the equivalences in Figure 5.

Dead computation. If we let Γ = U(Θ), A = U(X) and B = U(Y ) and (ρ, ρ′) ∈
[[Θ]] then we have to show

([[Γ � let x⇐M inN : TB]] ρ, [[Γ � N : TB]] ρ′) ∈ [[Tε′Y ]]

Pick R ∈ Rε′ and (s, s′) ∈ R, and let (s1, x) = [[Γ � M : TA]] ρ s. As [[Θ]] is a
PER we know (ρ, ρ) ∈ [[Θ]], and because wrs(ε) = ∅ we can apply Lemma 8 to
deduce that s1 = s. Hence

[[Γ � let x⇐M inN : TB]] ρ s = [[Γ � N : TB]] ρ s

and by assumption on N

([[Γ � N : TB]] ρ s, [[Γ � N : TB]] ρ′ s′) ∈ R× [[Y ]]

so we’re done.

Pure lambda hoist. Define Γ = U(Θ), A = U(X), B = U(Y ), C = U(Z). Pick
(ρ, ρ′) ∈ [[Θ]], R ∈ R{} and (s, s′) ∈ R (note that R is actually unconstrained in
this case). Then

[[Γ � val (λx : A.let y⇐M inN) : T (A → TB)]] ρ s
= (s, λx ∈ [[A]].[[Γ, x : A � let y⇐M inN : TB]] (ρ, x))

and
[[Γ � let y⇐M in val (λx : A.N) : T (A → TB)]] ρ′, s′

= (s′′, λx′ ∈ [[A]].[[Γ, x : A, y : C � N : TB]] (ρ′, x′, y′))

where
(s′′, y′) = [[Γ � M : TC]] ρ′ s′

Now, as M doesn’t write, Lemma 8 entails s′′ = s′ and hence (s, s′′) ∈ R.
Thus it remains to show that the two functions are in [[X → TεY ]]. So assume
(x, x′) ∈ [[X ]], we have now to show

([[Γ, x : A � let y⇐M inN : TB]] (ρ, x),
[[Γ, x : A, y : C � N : TB]] (ρ′, x′, y′)) ∈ [[TεY ]]
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So pick R2 ∈ Rε, (s2, s
′
2) ∈ R2 and calculate

[[Γ, x:A � let y⇐M inN : TB]] (ρ, x) s2 = [[Γ, x:A, y:C � N : TB]] (ρ, x, y2) s3

where (as x �∈ fv(M))

(s3, y2) = [[Γ � M : TC]] ρ s2

By Lemma 8, s3 = s2, so (s3, s
′
2) ∈ R2. As M preserves all relations, it preserves

{(s2, s
′)}, so (y2, y

′) ∈ [[Z]], which implies

((ρ, x, y2), (ρ′, x′, y′)) ∈ [[Θ, x : X, y : Z]]

so we’re done by assumption that N preserves R2.

Duplicated computation. Let Γ = U(Θ), A = U(X), B = U(Y ) and (ρ, ρ′) ∈
[[Θ]]. Because [[Θ]] is a PER, we also have (ρ, ρ) ∈ [[Θ]] and (ρ′, ρ′) ∈ [[Θ]]. Pick
R ∈ Rε∪ε′ and (s0, s

′
0) ∈ R. We need to show

([[Γ � let x⇐M ; y⇐M inN : TB]] ρ s0,
[[Γ � let x⇐M inN [x/y] : TB]] ρ′ s′0)

∈ R× [[Y ]]

Let

(s1, x) = [[Γ � M : TA]] ρ s0

(s′1, x
′) = [[Γ � M : TA]] ρ′ s′0

(s2, y) = [[Γ � M : TA]] ρ s1.

By Lemma 8 we can deduce s1 =L\wrs(ε) s0. We can use this fact as assumption
to Lemma 9 starting in states s1 and s0, since rds(ε) ∩ wrs(ε) = ∅, to obtain
(y, x) ∈ [[X ]] and for all � ∈ L, either s2(�) = s1(�), or s2(�) = s1(�) and
s1(�) = s0(�). Hence s2 = s1; in other words, M behaves idempotently.

Expanding the semantics,

[[Γ � let x⇐M ; y⇐M inN : TB]] ρ s0 = [[Γ ′ � N : TB]] (ρ, x, y) s2

[[Γ � let x⇐M inN [x/y] : TB]] ρ′ s′0 = [[Γ ′ � N : TB]] (ρ′, x′, x′) s′1

where Γ ′ = Γ, x : A, y : A.
Since R ∈ Rε∪ε′ we must have R ∈ Rε. Therefore M preserves R, so we

can deduce that (x, x′) ∈ [[X ]] and (s1, s
′
1) ∈ R, so (s2, s

′
1) ∈ R. By transitivity

we have that (y, x′) ∈ [[X ]]. Hence ((ρ, x, y), (ρ′, x′, x′)) ∈ [[Γ ′]]. Finally, because
R ∈ Rε′ , we know that N preserves R, from which we obtain the desired result.

Commuting computations. Let Γ = U(Θ), Ai = U(Xi) and B = U(Y ). Pick
(ρ, ρ′) ∈ [[Θ]], R ∈ Rε1∪ε2∪ε′ , (s0, s

′
0) ∈ R. Let

(s1, x1) = [[Γ � M1 : TA1]] ρ s0 and (s2, x2) = [[Γ � M2 : TA2]] ρ s1

(s′1, x
′
2) = [[Γ � M2 : TA2]] ρ′ s′0 and (s′2, x

′
1) = [[Γ � M1 : TA1]] ρ′ s′1.
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By the definition of Rε1∪ε2 for reading we know (1) that s0 =rds(ε1)∪rds(ε2) s′0.
By four applications of Lemma 8, we have

s1 =L\wrs(ε1) s0 (2) s2 =L\wrs(ε2) s1 (3)
s′1 =L\wrs(ε2) s

′
0 (4) s′2 =L\wrs(ε1) s

′
1 (5)

From (1), (4) and the first side-condition on the rule, we have s′0 =rds(ε1) s
′
1. We

can use this as assumption to apply Lemma 9 to M1 starting in states s0 and s′1
with corresponding environments ρ and ρ′, to get (x1, x

′
1) ∈ [[X1]] and

∀� ∈ L, s1(�) = s′2(�) ∨ (s1(�) = s0(�) ∧ s′2(�) = s′1(�)) (6)

From (1), (2) and the second side-condition on the rule, we have s′0 =rds(ε2) s1.
We can use this as assumption to apply Lemma 9 to M2 starting in states s1

and s′0 with corresponding environments ρ and ρ′, to get (x2, x
′
2) ∈ [[X2]] and

∀� ∈ L, s2(�) = s′1(�) ∨ (s2(�) = s1(�) ∧ s′1(�) = s′0(�)) (7)

We now show that for all � ∈ L either � ∈ wrs(ε1 ∪ ε2) and s2(�) = s′2(�), or
s2(�) = s0(�) and s′2(�) = s′0(�). In other words, there is some state change Δ
with dom(Δ) ⊆ wrs(ε1 ∪ ε2) such that s2 = s0[Δ] and s′2 = s′0[Δ].

First suppose � /∈ wrs(ε1 ∪ ε2). By (2) and (3) we have s2(�) = s0(�), and
by (4) and (5) we have s′2(�) = s′0(�) so we’ve shown the right hand disjunct.

Now suppose � ∈ wrs(ε1). Therefore � /∈ wrs(ε2) by the third side-condition
on the rule. By (6) either s1(�) = s′2(�) (= s2(�) by (3)), or s1(�) = s0(�) (= s2(�)
by (3)) and s′2(�) = s′1(�) (= s′0(�) by (4)) which is the disjunction above. Similar
reasoning applies if � ∈ wrs(ε2).

Since (s0, s
′
0) ∈ R we can show that (s2, s

′
2) ∈ R by induction on the size

of dom(Δ), using the definition of Rw�
for each � ∈ dom(Δ).

Now, expanding the semantics,

[[Γ�let x1⇐M1;x2⇐M2 inN : TB]] ρ s0 = [[Γ ′�N : TB]] (ρ, x1, x2) s2

[[Γ�let x2⇐M2;x1⇐M1 inN : TB]] ρ′ s′0 = [[Γ ′�N : TB]] (ρ′, x′
1, x

′
2) s

′
2

where Γ ′ = Γ, x1 : A1, x2 : A2. We have ((ρ, x1, x2), (ρ′, x′
1, x

′
2)) ∈ [[Γ ′]]. Finally,

because R ∈ Rε′ , we know that N preserves R starting in states s2 and s′2, from
which we obtain the desired result. +,
To make the link between relatedness and contextual equivalence, we have to say
something just a little more sophisticated than ‘related terms are contextually
equivalent’, as we also have to restrict the set of contexts. Write (Θ � TεX)� for
the set of all ground contexts C[−] whose holes − are typable as Θ � − : TεX in
the extended language. Then write (Θ |= TεX)� for the set of all contexts with
a hole typeable as UΘ � − : T(UX) in the base language such that

∀M,M ′. Θ |= M = M ′ : TεX =⇒ [[� C[M ] : T(bool)]] = [[� C[M ′] : T(bool)]]

Then Theorem 2 plus adequacy implies that whenever Θ � M = M ′ : TεX , then
for all C[−] in (Θ |= TεX)� and for all s0,s1

〈s0, C[M ]〉 ⇓ 〈s1, true〉 ⇐⇒ 〈s0, C[M ′]〉 ⇓ 〈s1, true〉.
and by the congruence rules, (Θ � TεX)� ⊆ (Θ |= TεX)�.
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The equations above also imply some effect-dependent type isomorphisms,
proved by defining contexts transforming typed terms in both directions and
showing that both compositions rewrite to the identity. For example

X × Y → TεZ ∼= X → T{}(Y → TεZ)

follows from βη rules and the pure lambda hoist equation. However, there are
valid contextual equivalences and isomorphisms that do not follow from the
semantics. For example

(1 → Twxbool) → T{}bool ∼= 1 → T{}bool

does not hold in the model because of the presence of the non-definable ‘snap-
back’ [7] function λg.λs. let (s′, b) = g() s in (s, b).

4 Discussion

We have shown how an extensional interpretation of read and write effects may
be given using a non-standard form of relational parametricity over a standard
semantics, and how that semantics may be used to justify program transfor-
mations. This contrasts with more common intensional approaches, based on
traces in an instrumented semantics, which fail to decouple program properties
from a particular syntactic system for establishing them and are not well-suited
to reasoning about equivalences. We have also verified the interesting results of
Sections 2.3 and 3 using the Coq proof assistant; the script is available via the
first author’s homepage.

The general relational approach that we are using here has been demonstrated
to work well in both denotational and operational settings. Denotational ap-
proaches to the semantics of analysis properties using directly the obvious “fac-
tors through” style of definition (e.g. saying a computation is observationally
pure if its denotation factors through that of val ) can easily raise unpleasant
questions of definability if one tries to recast them in an operational framework.

In this paper we have concentrated on an extremely simple effect system, so
as to make the methodology as clear as possible. Working with domains instead
of sets, to allow recursion, is straightforward. With Buchlovsky, we have also
successfully applied just the same techniques to reason about transformations
justified by an effect analysis for exceptions. Looking at the set of all relations
preserved by a subset of the operations on a monad really does seem to be
the ‘right’ way of understanding effect systems (and seems not unrelated to the
algebraic view of effects being developed by Plotkin and Power [15]). We are
confident the idea extends to a wide class of effect analyses (and more general
notions of refinement type), and are currently working on applying it to region-
based encapsulation of state effects in the presence of dynamic allocation. This
is a challenging problem; despite much work on monadic encapsulation (and
on region-based memory management [19]) since the introduction of runST in
Haskell [10], some of it incorrect and most of it rather complex, previous work
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mostly addresses simple syntactic type soundness, rather than equations [12],
though the region calculus has been given a relation-based semantics [2] and
studied using bisimulation [9]. Parametric logical relations have previously been
used for establishing particular equivalences involving encapsulated state [16,7]
and even provide a complete characterization of contextual equivalence for a
language with integer store [14]. However, a combination of those constructions
with our notion of refined types that is suitably generic and also expressive
enough to validate, for example, interesting cases of the duplicated computations
equation, has so far proved elusive.2

One interesting application of effect analyses is in assertion checking for im-
perative languages. Assertions are typically boolean expressions in the same
language as is being checked and make use of side-effecting operations such as
mutation in computing their results. Yet it is important that these side-effects
do not affect the behaviour of the program being specified: assertions should
be observationally pure. Naumann uses simulation relations to capture a notion
of observational purity for boolean-valued expressions that allows mutation of
encapsulated state [13].

PER-based accounts of dependency and information flow [1,18] are closely
related to the present work; as a referee observed, observable notions of reading
and writing have a natural connection with confidentiality and integrity.

Apart from the lines of future work implicit in the above, it would be inter-
esting to try to use our approach to capture some general relationship between
effect systems and their intuitive duals, capability/permission systems.
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Abstract. We propose a new join point model for aspect-oriented pro-
gramming (AOP) languages. In most AOP languages including AspectJ,
a join point is a time interval of an action in execution. While those
languages are widely accepted, they have problems in aspects reusabil-
ity, and awkwardness when designing advanced features such as trace-
matches. Our proposed join point model, namely the point-in-time join
point model redefines join points as the moments both at the beginning
and end of actions. Those finer-grained join points enable us to design
AOP languages with better reusability and flexibility of aspects. In this
paper, we designed an AspectJ-like language based on the point-in-time
model. We also give a denotational semantics of a simplified language
in a continuation passing style, and demonstrate that we can straight-
forwardly model advanced language features such as exception handling
and cflow pointcuts.

1 Introduction

Aspect-oriented programming (AOP) is a programming paradigm that addresses
problems of crosscutting concerns[11, 15], such as exception handling, security
mechanisms and coordinations among modules. Since implementations of cross-
cutting concerns without AOP have to involve with many modules, AOP im-
proves maintainability of programs by making those concerns into separate

ules.
One of the fundamental language mechanisms in AOP is the pointcut and

advice mechanism, which can be found in many AOP languages including As-
pectJ[15]. As previous studies have shown, design of pointcut language and selec-
tion of join points are key design factors of the pointcut and advice mechanisms
in terms of expressiveness, reusability and robustness of advice declarations
[4,14, 16–18,21].

A pointcut serves as an abstraction of join points in the following senses:

– It can give a name to a set of join points (e.g., by means of named pointcuts
in AspectJ).

Currently with Toshiba Corp.
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– Differences among join points, such as join point kinds and parameter posi-
tions, can be subsumed. For example, when we define a logging aspect that
records the first argument to runCommand method and the second argument
to debug, different parameter positions are subsumed by the next pointcut:

pointcut userInput(String s):

(call(* Toplevel.runCommand(String)) && args(s))

|| (call(* Debugger.debug(int,String)) && args(*,s));

– It can separate concrete specifications of interested join points from advice
declarations (e.g., by means of abstract pointcuts and aspect inheritance in
AspectJ). In other words, we can parameterize interested join points in an
advice declaration.

There have been several studies on advanced pointcut primitives for accurately
and concisely abstracting join points[4, 16, 17, 21].

In order to allow pointcuts to accurately abstract join points, the pointcut
and advice mechanisms should also have a rich set of join points. If an interested
event is not a join point, there is not way to advise it at all. Several studies have
investigated to introduce new kinds of join points, such as loops[14], conditional
branches[18], and local variable accesses[19] into AspectJ-like languages. In other
words, the more kinds of join points the pointcut and advice mechanism has,
the more opportunities advice declarations can be applied to.

This paper focuses on a language with finer grained join points for improving
reusability of advice declarations. The join point model can be compared with
traditional join point model in AspectJ-like languages as follows:

– In the join point model in AspectJ-like languages, a join point represents
duration of an event, such as a call to a method until its termination. We
call this model the region-in-time model because a join point corresponds to
a region on a time line.

– In our proposing join point model, a join point represents an instant of
an event, such as the beginning of a method call and the termination of a
method call. We call this model the point-in-time model because a join point
corresponds to a point on a time line.

The contributions of the paper are:

– We demonstrate that the point-in-time join point model can improve
reusability of advice.

– We present an experimental AOP language called PitJ based on the point-
in-time model. PitJ’s advice is as expressive as AspectJ’s in most typical use
cases even though the advice mechanism in PitJ is simpler than the one in
AspectJ-like languages.

– We give a formal semantics of the point-in-time model by using a small
functional AOP language called Pitλ. Thanks to affinity with continuation
passing style, the semantics gives a concise model with advanced features
such as exception handling.
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1 aspect ConsoleLogging {

2 pointcut userInput(): call(String *.readLine());

3 after() returning(String s): userInput() {

4 Log.add(s);

5 }

6 }

Fig. 1. Logging aspect for the console version

2 Reusability Problem of Region-in-Time Join Point
Model

Although languages that are based on the region-in-time join point model are
designed to be reusable, there are situations where aspects are not as reusable
as they seem to be. This section explains such situations, and argues that this
is common problem to the region-in-time join point model.

In order to clarify the problem, this section uses a crosscutting concern that
is to log user’s input received by the following two versions of base program:

a console version that receives user input from the console.
a hybrid version, evolved from the console version, that receives user input

from both the console and GUI components.

2.1 Logging Aspect for the Console Version

Figure 1 shows a logging aspect for the console version in AspectJ[15]. We assume
that the base program receives user input as return values of readLine method
in several classes.

Line 2 declares a pointcut userInput that matches any join point that rep-
resents a call to readLine method. Lines 3–5 declare advice to log the input.
after() returning(String s) is an advice modifier of the advice declaration
that specifies to run the advice body after the action of the matched join points
with binding the return value from the join point to variable s. The body of the
advice, which is at line 4, records the value.

It is possible to declare a generic aspect in order to subsume changes of join
points to be logged in different versions. For example, Figure 2 shows a generic
logging aspect that uses abstract pointcut userInput in an advice declaration,
and a concrete logging aspect for the console version that concretizes userInput
into call(String *.readLine()).

The generic logging aspect is reusable to log user’s input from environment
variables by changing userInput() pointcut in ConsoleLogging in Figure 2
to call(String *.readLine()) || call(String System.getenv(String)).
Note that we do not need to modify the generic logging aspect.
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1 abstract aspect UserInputLogging {

2 abstract pointcut userInput();

3 after() returning(String s): userInput() {

4 Log.add(s);

5 }

6 }

7 aspect ConsoleLogging extends UserInputLogging {

8 pointcut userInput(): call(String *.readLine());

9 }

Fig. 2. Generic logging aspect and its application to the console version

1 aspect HybridLogging extends UserInputLogging {

2 pointcut userInput(): call(String *.readLine());

3 pointcut userInput2(String s):

4 call(String *.onSubmit(String)) && args(s);

5 before(String s): userInput2(s) {

6 Log.add(s);

7 }

8 }

Fig. 3. Logging aspect for the hybrid version

2.2 Modifying the Aspect to the Hybrid Version

The generic logging aspect is not reusable when the base program changes its
programming style. In other words, pointcuts no longer can subsume changes in
certain kinds of programming style.

Consider a hybrid version of the base program that receives user input from
GUI components as well as from the console. The version uses the GUI framework
which calls onSubmit (String) method on a listener object in the base program
with the string as an argument when a user inputs a string via GUI interface.

Since UserInputLogging in Figure 2 can only log return values, we have to
define a different pointcut and advice declaration as shown in Figure 3.

Making the logging aspect for hybrid version reusable is tricky and awkward.
Since single pointcut and advice can not subsume differences between return val-
ues and arguments, we have to define a pair of pointcuts and advice declarations.
In order to avoid duplication in advice bodies, we need to define an auxiliary
method and let advice bodies call the method. The resulted aspect is shown in
Figure 4.

Some might argue that it is possible to reuse UserInputLogging aspect in
Figure 4 by finding join points that always run before calls to onSubmit. How-
ever, such join points can not always be found, especially when advice decla-
rations take parameters from join points. Moreover, such a compromise usually
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1 abstract aspect UserInputLogging2 {

2 abstract pointcut userInputAsReturnValue();

3 abstract pointcut userInputAsArgument(String s);

4 after() returning(String s): userInputAsReturnValue() {

5 log(s);

6 }

7 before(String s): userInputAsArgument(s) {

8 log(s);

9 }

10 void log(String s) {

11 Log.add(s);

12 }

13 }

Fig. 4. Generic logging aspect that can log for both return values and arguments

makes aspects fragile because the pointcuts indirectly specify join points that
the aspects are actually interested in.

2.3 Awkwardness in Advanced Pointcuts

Some advanced pointcuts require to distinguish beginnings and ends of actions as
different events. However, since region-in-time model does not distinguish them
as different join points, the resulted languages have to introduce mechanisms to
not only identifying join points but also mechanisms to specify their beginnings
and ends.

For example, the trace maching mechanism is one of the useful extensions to
AOP languages that enables advice run based on the history of events[1]. The
code below shows an example of a tracematch that logs query calls performed
only after completion of a login call.

1 tracematch() {
2 sym login after returning: call(* login(User,..));
3 sym query before: call(* query(Query));
4 login query+ // any query after login
5 { Log.add(...); } // shall be logged
6 }

The description of the tracematch consists of two parts, namely declarations
of the symbols and a piece of code with a trace pattern. Line 2 and 3 declare
symbols login and query as the end of a login call and the beginning of a
query call, respectively. Then line 4 specify the trace pattern of those events in
a regular expression of declared symbols.

One might first think that using named pointcuts instead of symbols could
simplify the language without losing expressiveness. However, it is not possible as
the named pointcuts can merely specify the join points and lack the information
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whether the programmer is interested in either the beginnings or the ends of the
join points.

2.4 Analysis of the Problem

By generalizing the above problem, we argue that pointcuts in the region-in-time
join point model can not subsume differences between the beginnings of actions
and the ends of actions.

Such a difference is not unique to the logging concern, but can also be seen in
many cases. For example, following differences can not be subsumed by pointcuts
in the region-in-time join point model:

– a polling style program that waits for events by calling a method and an
event driven style program that receives events by being called by a system,

– a method that reports an error by returning a special value and a method
that does by an exception, and

– a direct style program in which caller performs rest of the computation and
continuation-passing style in which the rest of computation is specified by
function parameters.

Our claim is that the problem roots from the design of join point model in
which a join point represents a region-in-time, or a time interval during program
execution. For example, in AspectJ, a call join point represents a region-in-time
while invoking the method, executing the body of the method and returning
from the method. This design in turn requires advice modifiers which indicate
either the beginnings or the ends of the join points that are selected by pointcut.

3 Point-in-Time Join Point Model

3.1 Overview

We propose a new join point model, called point-in-time join point model, and
design an experimental AOP language, called PitJ. PitJ differs from AspectJ-like
languages in the following ways:

– A join point represents a point-in-time (or an instant of program execution)
rather than a region-in-time (or an interval). Consequently, there are no such
notions like “beginning of a join point” or “end of a join point”.

– There are new kinds of join points that represent terminations of actions.
For example, a return from methods is an independent join point, which we
call a reception join point, from a call join point. Similarly, an exceptional
return is a failure join point. Table 1 lists the join points in PitJ along with
respective ones in AspectJ.

Older versions of AspectJ[15] have reception join points for representing different
actions.

1

1

136 H. Masuhara, Y. Endoh, and A. Yonezawa



PitJ AspectJ

call / reception / failure method call
execution / return / throw method execution

get / success get / failure get field reference
set / success set / failure set field assignment

Table 1. Join points in PitJ and AspectJ

readLine();

main

readLine(){

}

console

call join point

readLine();

main

readLine(){

}

console

call join point

reception join point

in AspectJ-like languages in PitJ

Fig. 5. Join points in languages based on region-in-time and point-in-time models

– There are new pointcut constructs that match those new kinds of join points.
For example, reception(m) is a pointcut that selects any reception join point
that returns from the method m.

– Advice declarations no longer take modifiers like before and after to specify
timing of execution.

Figure 5 illustrate the difference between the point-in-time join point model
and region-in-time one.

Figure 6 shows example aspect definitions in PitJ. The generic aspect (lines
1–6) is not different from the one in AspectJ expect that the advice does not
take a modifier (line 3). HybridLogging aspect concretizes the pointcut by using
reception and call pointcut primitives (lines 9–10). When readLine returns to
the base program, a reception join point is created and matches the userInput.
The return value is bound to s by args pointcut. When onSubmit method is
called, a call join point matches the pointcut with binding the argument to s.

As we see in Figure 6, differences in the timing of advice execution as well
as the way of passing parameters can be subsumed by pointcuts with the point-
in-time join point model. This ability allows us to define more reusable aspect
libraries by using abstract pointcuts because users of the library can fully control
the join points to apply aspect.

We verified the reusability problem which is effectively solved by the point-in-
time join point model by case study with some realistic applications, aTrack[2]
and AJHotDraw[20]. The details of the case study are presented in the other
literature[13].
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1 abstract aspect UserInputLogging {

2 abstract pointcut userInput(String s);

3 advice(String s) : userInput(s) {

4 Log.add(s);

5 }

6 }

7 aspect HybridLogging extends UserInputLogging {

8 pointcut userInput(String s): args(s) &&

9 (reception(String *.readLine()) || call(* *.onSubmit(String)));

10 }

Fig. 6. A logging abstract aspect and its application to the hybrid vertion in PitJ

1 aspect ErrorReporting {

2 after() throwing: call(* *.readLine()) {

3 System.out.println("exception");

4 }

5 }

Fig. 7. An aspect to capture exceptions in AspectJ

3.2 Exception Handling

In AspectJ, advice declarations have to distinguish exceptions by using a special
advice modifier after() throwing. It specifies to run the advice body when
interested join points terminate by throwing exception. For example, a sample
aspect in Figure 7 prints a message when an uncaught exception is thrown from
readLine. Similar to the discussion on the before and after advice, termination
by throwing an exception and normal termination can not be captured by single
advice declartion .

In PitJ, ‘termination by throwing an exception’ is regarded as an independent
failure join point. Figure 8 is an equivalent to the one in Figure 7. A pointcut
failure matches a failure join point which represents a point-in-time at the
termination of a specified method by throwing an exception.

3.3 Around-like Advice

One of the fundamental questions to PitJ is, by simplifying advice modifiers,
whether it is expressive enough to implement around advice in AspectJ, which
has powerful mechanisms. We analyzed that around advice in AspectJ has four
abilities:

1. replace the parameters to the join point with new ones,

It is possible to capture them by using after advice, which however can not access
to return values or exception objects.

2

2
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1 aspect ErrorReporting {

2 advice(): failure(* *.readLine()) {

3 System.out.println("exception");

4 }

5 }

Fig. 8. An aspect to capture exceptions in PitJ

2. replace the return values to the caller of the join point,
3. go back to the caller without executing the join point, and
4. execute the join point more then once.

In PitJ, the abilities 1 and 2 can be simulated by treating a return value of an
advice body as a new value. For example, consider an advice declaration:

advice(String s): args(s) && (reception(* *.readLine())

|| call(* *.onSubmit(String)) {

return s.replaceAll("<", "&lt;").replaceAll(">", "&gt;");

}

This advice sanitizes user input by replacing unsafe characters with escape se-
quences. When an advice body ends without return, the value in the join points
remains unchanged.

For the ability 3, we introduce a new construct skip. When it is evaluated
in a call join point, jump occurs to the subsequent reception join point with no
execution between the two join points. Nothing happens when evaluated in a
reception and failure join points. For example, consider an advice declaration:

advice(): call(* *.readLine()) { skip "dummy"; }

With the advice, even if readLine() is evaluated, it immediately returns "dummy"
without reading any string from a console.

For the ability 4, a special function proceed is added. It executes the action
until the subsequent reception one, and then returns the result. For example,
consider an advice declaration:

advice(): call(* *.readLine()) {

skip(proceed() + proceed());

}

With this advice, the method readLine receives two lines at once, concatenates
them, and returns it.

We introduced the construct skip so that advice declarations can dynam-
ically control how to proceed. An alternative design would be to introduce a
different kind of advice that does not proceed to original join points even if it
does not evaluate skip. We need further programming experience to compare
those alternatives in terms of program readability.
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3.4 More Advanced Features

Some existing AOP systems including AspectJ provides some context sensitive
pointcuts. They don’t always match specific kinds of join points. Instead, they
judge whether a join point is in a specific context. PitJ has cflow pointcut, which
is a kind of context sensitive pointcuts. It identifies join points based on whether
they occur in the dynamic context during a region-in-time between a specified
call join point and the subsequent reception one. For example, cflow(call(*
*.onSubmit(String))) specifies any join point that occurs between when a
onSubmit method is called and when it returns.

In addition, we are considering the integration of trace sensitive aspects [9, 10,
21] which use execution trace, or history of occured join points, to judge whether
to perform additional computation, We expect that our finer grained join points
enhance its effectiveness and robustness.

3.5 Design Considerations of Pointcut Primitives

The design of the pointcuts in PitJ is chosen among several alternatives. In fact,
we examined the following three designs, which have different advantages and
disadvantages:

1. Provide a primitive for each kind of join point, similar to the pointcuts in
AspectJ. While it makes each pointcut description simple, it requires many
pointcut primitives. This is our current design.

2. Provide a set of primitives that discriminates kinds of events (e.g., call and
execution) and a set of primitives taht discriminates timing relative to an
event (e.g., entry and exit). For example, call(* *.readLine()) matches
both beginnings and ends of readLine calls, and call(* *.readLine())
&& exit() matches only ends of readLine calls. It requires a smaller set of
pointcut primitives, but often makes each pointcut description longer.

3. Provide a set of primitive that identifies join points that represent begin-
nings of events, in addition to cflow-like pointcuts that create pointcuts
that identify ends and failures of events from a given pointcut. For ex-
ample, call(* *.readLine()) matches begginings of readLine calls and
cont(call(* *.readLine()))matches ends of readLine calls. Though this
design might be more powerful than the above two designs, it is not certain
whether we can define a clear semantics.

We chose the first design because its simplicity and affinity with AspectJ. No
design is, however, clearly better than others. More programming experiences
will give us better insight to discuss about the right design.

4 Formal Semantics

We present a formal semantics of Pitλ, which is a simplified version of PitJ. Pitλ
simplifies PitJ by using a lambda-calculus as a base language, and by supporting
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Syntax:

Expression e :: x (Identifier)
fun x e (Function)
e e (Application)

Semantic algebras:
numbers Int , booleans Bool , identifiers Ide

v Val Int Bool Fun (Values)
ρ Env Ide Val (Environments)
κ Ctn Val Ans (Continuations)
f Fun Ctn Ctn (Functions)

Ans Val (Answers)

Valuation function for the expressions:

E : Expression Env Ctn Ans
E x ρ κ κ ρ x

E fun x e ρ κ κ inFun λκ v. E e v x ρ κ
E e0 e1 ρ κ E e0 ρ λFun f . E e1 ρ λv.f κ v

Fig. 9. Syntax and semantics of the base language

only call, reception and failure join points. The semantics contributes to clar-
ify the detailed behavior of the program especially when integrated with other
advanced features such as exception handling and context sensitive pointcuts.
It also helps to compare expressiveness of the point-in-time join point model
against the region-in-time one.

4.1 Base Language

Figure 9 shows the syntax of the base language and its denotational semantics
in a continuation passing style (CPS). We use untyped lambda-calculus as the
base language. The semantics follows the style of Danvy and Filinski[8].

4.2 Syntax and emantics of Pitλ0

We begin with Pitλ0, which is a core part of Pitλ that has only call and reception
join points. Syntactically, it uses the same expressions to the base language, and
has pointcuts and a list of advice as shown in Figure 10.

We give a semantics of Pitλ0 by modifying the semantics of the base language
in Section 4.1.

First, we define additional semantic algebras. An event ε is either call or
reception with a function name and a join point θ is a pair of an event and an
argument:

ε :: call x reception x Evt
θ :: ε, v Jp

S
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Expression e :: x (Identifier)
fun x e (Function)
e e (Application)

Pointcut p :: call(x) reception(x) args(x) p && p p || p
Advice a :: advice : p e; a

Fig. 10. Pitλ0 syntax

P : Pointcut Env Jp Env False

P call(x) ρ call x , v
ρ if x x or x

False otherwise

P reception(x) ρ reception x , v
ρ if x x or x

False otherwise

P args(x) ρ ε, v v x ρ

P p0 && p1 ρ θ
P p1 ρ θ if P p0 ρ θ ρ

False otherwise

P p0 || p1 ρ θ
ρ if P p0 ρ θ ρ

P p1 ρ θ otherwise

Fig. 11. Semantics of pointcuts

Additionally, we define an auxiliary function σ that extracts a signature (or a
name) from an expression.

σ : Expression Identifier

σ e
e if e is Identifier

$ otherwise

If it receives an Identifier, the argument itself is returned. Otherwise, it returns
the dummy signature $. For example, σ x is x , and σ fun x x is $.

The semantics of the pointcuts is a functionP shown in Figure 11.P p ρempty θ
tests whether the pointcut p and the current join point θ match. If they do, it
returns an environment that binds a variable to a value by args pointcut. Oth-
erwise, it returns False.

We then define the semantic function A for lists of advice declarations (Fig-
ure 12), which receives an advice list, an event and a continuation. When the
pointcut of the first advice matches a join point, it returns a continuation that
evaluates the advice body and then evaluates the rest of the advice list. Other-
wise, it returns a continuation that evaluates the rest of the advice list. At the
end of the list, it continues to the original computation.

We finally define the semantic function of the expression. In the section, the
semantics of Identifier and Function remain unchanged. The semantics of
Application in Pitλ0 is defined by inserting application to A at appropriate
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A : Advices Evt Ctn Ctn

A advice : p e; a ε κ v
E e ρ A a ε κ if P p ρempty ε, v ρ

A a ε κ v otherwise

A ε κ v κ v

Fig. 12. Semantics of advice

E : Expression Env Ctn Ans
E x ρ κ κ ρ x

E fun x e ρ κ κ inFun λκ v. E e v x ρ κ
E e0 e1 ρ κ E e0 ρ λFun f . E e1 ρ λv.

A a0 call σ e0 f A a0 reception σ e0 κ v

Fig. 13. Semantics of expressions

positions. The original semantics of Application is as follows:

E e0 e1 ρ κ E e0 ρ λFun f . E e1 ρ λv. f κ v

The shadowed part f κ is a continuation that executes the function body
and passes the result to the subsequent continuation κ. The application to the
continuation f κ v, therefore, corresponds to a call join point. By replacing the
continuation with A a call x f κ , we can run applicable advice at function
calls:

E e0 e1 ρ κ E e0 ρ λFun f . E e1 ρ λv.A a0 call σ e0 f κ v

where a0 is the globally defined list of all advice declarations.
Similarly a reception of a return value from a function application can be

found by η-expanding as follows:

E e0 e1 ρ κ E e0 ρ λFun f .E e1 ρ λv.f λv .κ v v

Therefore, advice application at reception join point can be achieved by replacing
κ with A a reception x κ.

Figure 13 shows the final semantics for the expression with call and recep-
tion join points. As we have seen, advice application is taken into the semantic
function in a systematic way: given a continuation κ that represents a join point,
substitute with A a ε κ. In the next section, we will see advanced features can
also be incorporated in the same ways.

This η-expansion prevents tail-call elimination. It fits the facts that defining an
advice whose pointcut specifies a reception join point makes tail-call elimination
impossible.

3

3
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Expression e :: . . .
try e with x e (Try)
raise e (Raise)

Pointcut p :: . . . failure(x)

Fig. 14. Additional constructs for exception handling

5 Advanced Features with Pitλ

With the aid of the clarified semantics, we are now able to discuss advanced lan-
guage features with the point-in-time model. Thus far, we investigated several ad-
vanced features by defining an extended language called Pitλ1. The investigated
features include exception handling, context sensitive pointcuts (i.e., cflow-like
pointcut) and around advice. Due to the space limitation, we only present the
exception handling mechanism below. The other features are explained in the
other literatures[12, 13].

5.1 Exception Handling

In AspectJ, advice declarations have to distinguish exceptions by using a special
advice modifier (as described in Subsection 3.2). It not only complicates the
problem in reusability, but also makes the semantics awkward. This is because
we have to pay attention to all combinations of advice modifiers and pointcuts.
In fact, some existing formalizations[22, 23] gave a slightly different semantic
equation to each kind of advice declarations. Meanwhile, the point-in-time join
point model has no advice modifiers, which makes the semantics simpler.

Figure 14 shows additional constructs for exception handling: Try and Raise
as the expression, and failure as the pointcut. For the sake of simplicity, we
don’t introduce the special values which represent an exception; an arbitrary
value can be raised. For example, (fun x raise x) 1 raises the value 1 as
an exception. try ((fun x raise x) 1) 2 with x x 3 is evaluated nor-
mally to the value 4. But, with advice : failure( ) && args(x) x 2, it is
evaluated to the value 5.

We first give a standard denotational semantics to these constructs. In prepa-
ration for it, we introduce a continuation which represents current exception
handler to the semantics algebra Fun and the semantic functions A and E :

f Fun Ctn Ctn Ctn

E : Expression Env Ctn Ctn Ans

E x ρ κh κ κ ρ x
E fun x e ρ κh κ κ inFun λκh κ v.

E e v x ρ κh κ

E e0 e1 ρ κh κ E e0 ρ κh λFun f . E e1 ρ κh λv.

A a call σ e0 κh f κh A a reception σ e0 κh κ v
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(a) Pointcuts (failure only):

P failure(x) ρ failure x , v
ρ if x x or x

False otherwise

(b) Advices:

A : Advices Evt Ctn Ctn Ctn

A advice : p e; a ε κh κ v
E e ρ A a ε κh κ if P p ρempty ε, v ρ

A a ε κh κ v otherwise

A ε κh κ v κ v

(c) Expressions (Application, Try and Raise only):

E e0 e1 ρκhκ E e0 ρ κh λFun f . E e1 ρ κh λv.
A a call σ e0 κh

f A a failure σ e0 κh κh A a reception σ e0 κh κ v
E try e0 with x e1 ρ κh κ E e0 ρ λv. E e1 v x ρ κh κ κ

E raise e ρ κh κ E e ρ κh κh

Fig. 15. Semantics of Pitλ1 with exception handling

The new definition of A is in Figure 15-(b). This modification, adding the shad-
owed parts, is mechanical since additional continuations are dealt with only by
the additional constructs. After that, we can define a semantics of the Try and
the Raise as Figure 15-(c).

Now, we define the semantics of a failure join point by modifying the original
semantics. The failure is added to the events Evt :

ε :: . . . failure x

and the semantics of the failure pointcuts is defined as Figure 15-(a).
Then, look the semantics of Application. From the first argument κh in

f κh . . ., show up the application form by η-expansion.

E e0 e1 ρ κh κ E e0 ρ κh λFun f . E e1 ρ κh λv.
A a call σ e0 κh

f λv. κh v A a reception σ e0 κh κ v

This continuation κh corresponds to a failure join point. We therefore define
the semantics of Application as Figure 15-(c), in a similar way to call and
reception.

The above semantics clarifies the detailed behavior of the aspect mechanism
with exception handling. For example, consider that an exception is to be thrown
in an advice body, which runs at a call join point. It is not obvious whether other
advice declarations matching the same join point shall be executed in this case.
With the above semantics, we can easily tell that no declaration will be executed.
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This is because the semantics of Application passes κh to the semantic A in
order to execute advice at a call join point, like A a call name κh . . ., which
means that the exception handler of the advice execution is the same one to the
one of the function application.

6 Related Work

As far as we know, practical AOP languages with pointcut and advice, including
AspectJ[15], AspectWerkz[3] and JBoss AOP[6], are all based on the region-in-
time model. Therefore, the reusability problem in Section 2 is common to those
languages even though they have mechanisms for aspect reuse.

A few formal studies[5, 9, 22] treat beginning and end of an event as different
join points. However, motivations behind those studies are different from ours.
MinAML[22] is a low-level language that serves as a target of translation from a
high-level AOP language. Douence and Teboul’s work[9] focuses on identifying
calling contexts from execution history. Brichau et al.[5] attempt to provide a
language model that generalizes many AOP languages.

Including the region-in-time and point-in-time models, previous formal stud-
ies focus on different properties of aspect-oriented languages. Aspect SandBox
(ASB)[23] focuses on formalizing behavior of pointcut matching and advice ex-
ecution by using denotational semantics. Since ASB is based on the region-in-
time model, the semantics of advice execution has to have a rule for each advice
modifier. MiniMAO1[7] focuses on type soundness of around advice, based on
ClassicJava style semantics. It is also based on the region-in-time model.

7 Conclusion

We proposed an experimental new join point model. The model treats ends of
actions, such as returns from methods, as different join points from beginnings
of actions. In PitJ, ends of actions can be captured solely by pointcuts, rather
than advice modifiers. This makes advice declaration more reusable. Even with
simplified advice mechanism, PitJ is as expressive as AspectJ in typical use cases.

We also gave a formal semantics of Pitλ, which simplified from PitJ. It is a
denotational semantics in a continuation passing style, and symmetrically repre-
sents beginnings and ends of actions as join points. With the aid of the semantics,
we investigated integration of advanced language features with the point-in-time
join point model.

Our future work includes the following topics. We will integrate more ad-
vanced features, such as dflow pointcut[17], first-class continuation and tail-call
elimination. We will also plan to implement compiler for PitJ languages.
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Abstract. This paper tackles a problem often overlooked in functional
programming community: that of testing. Fully automatic test tools like
Quickcheck and G∀ST can test first order functions successfully. Higher
order functions, HOFs, are an essential and distinguishing part of func-
tional languages. Testing HOFs automatically is still troublesome since
it requires the generation of functions as test argument for the HOF to
be tested. Also the functions that are the result of the higher order func-
tion needs to be identified. If a counter example is found, the generated
and resulting functions should be printed, but that is impossible in most
functional programming languages. Yet, bugs in HOFs do occur and are
usually more subtle due to the high abstraction level.

In this paper we present an effective and efficient technique to test
higher order functions by using intermediate data types. Such a data
type mimics and controls the structure of the function to be generated. A
simple additional function transforms this data structure to the function
needed. We use a continuation based parser library as main example of
the tests. Our automatic testing method for HOFs reveals errors in the
library that was used for a couple of years without problems.

1 Introduction

Automatic test tools for functional languages are able to generate test cases,
execute the associated tests and derive a verdict from the test results. Basically a
predicate of the form ∀x ∈ X : P (x) is replaced by a function P :: X→ Bool. The
predicate is tested by evaluating the function P for a large number of elements
of type X. In Quickcheck these elements are generated in pseudo random order
by a user defined instance of a type class. G∀ST has a generic algorithm that
is able to generate elements of any type in a systematic way [6]. The user can
specify any other algorithm if the generic algorithm is inappropriate.

The advantages of this automatic testing is that it is cheap and fast. More-
over, the real code is tested. A inherent limitation of testing is that a proof by
exhaustive testing is only possible for finite types (due to generation algorithm
used, Quickcheck is not able to determine when all elements are tested and never
detects that a property is proven by exhaustive testing). A formal proof of a
property gives more confidence, but usually works on a model of the program
instead of the program itself and requires (much) user guidance. Hence, both
formal proofs and testing have their own value. It is at least useful to do a quick
automatic test of some property before investing much effort in a formal proof.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 148–164, 2006.
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The generation of elements of a type works well for (first order) data struc-
tures. Testing properties of HOFs requires functions as test argument and hence
the generation of functions by the test system. The possibilities to generate
functions are rather limited. In Quickcheck functions of type A→ B are gener-
ated by transforming elements of type A to an integer by a user defined instance
of the class coarbitrary. This integer is used to select an element of type B. A
multi-argument function of type A→ B→ C is transformed to a function B→ C

by providing a pseudo randomly generated element of type A. In this way all
information of all arguments is encoded in a single integer. This approach is not
powerful enough for more complex functions, and has as drawback that it is im-
possible to print these functions in a decent way. G∀ST used the same approach
with the difference that functions can be derived using a generic algorithm. Us-
ing an extensional representation of functions, by providing explicit input-output
pairs, is unsuited for large data types since it is usually impossible to determine
the arguments that will occur.

In this paper we show how functions of the desired form can be generated
systematically. The key step is to represent such a function by its abstract syntax
tree, AST. This AST is represented as algebraic data type. Its instances can be
generated automatically by G∀ST in the usual way. It is simple to transform the
AST to the desired function. An additional advantage of using a data type as
AST is that this can be printed in a generic way as well, while printing functions
is impossible in functional languages like Haskell and Clean.

We illustrate this technique with a full fleshed parser combinator library. In
[4] we introduced a library of efficient parser combinators. Using this library it is
possible to write concise, efficient, recursive descent parsers. The parsers can be
ambiguous if that is desired. Basically there are two ingredients that makes the
constructed parsers efficient. First, the user can limit the amount of backtracking
by a special version of the choice combinator that only yields a single result.
Second, the implementation of the combinators uses continuations instead of
intermediate data structures. Especially when parsed objects are processed in
a number of steps before a final parse result is produced, continuation based
parsers are faster than a straight forward implementation of parsers.

The price to be paid for using continuations instead of intermediate data struc-
tures, is that the implementation of the combinator becomes more complicated.
Each parser has three continuations, and some of these continuations have their
own continuation arguments. The parser combinators manipulate these continu-
ations in a rather tricky way. However, the use of the combinators is independent
of their implementation, and is not different for a library with a simple imple-
mentation using intermediate data types. The published combinators are tested
manually by the authors and checked by many users of the library. Much to our
surprise last year some errors in the library were found.

After improving the combinators we wanted to obtain more confidence in the
correctness of the library. Manual testing by a number of typical examples was
clearly insufficient. Using the techniques described here it was possible to test
this library automatically. During these test an additional error was found.
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It turns out that a similar representation of functions by data types is used
at different places in the literature. The technique is called defunctionalisation,
and the function transforming the data type is usually called apply. This tech-
nique was introduced by Reynolds [9], and repopularized by Danvy [3]. Using
defunctionalisation for generating functions and testing is new.

In the next section we will illustrate testing equality of functions with simple
examples. Section 3 introduces the basic techniques for generating functions as
arguments. We will apply this in the well-known example of monads by testing
the monadic laws. The main example treated in this paper is the testing of a
library of advanced parser combinators. Finally there is a conclusion.

2 Functions as Result of Higher Order Functions

Testing higher order functions that yield functions as results is relatively easy.
The test system has to verify whether the correct function is produced. In most
functional programming languages it is impossible to look inside functions (LISP
is an exception). Hence it is impossible to decide if this function is the desired
one by inspecting the function directly.

More importantly, for functions we are usually not interested in the exact
definition of the function, but in its behavior. Any definition will do, if it produces
the right function result to the given parameters. This implies that even if it
would be possible to look inside a function directly, this would not help us.
We are interested in the input/output behavior of the function instead of the
algorithm it uses.

Changing the function to be tested in such a way that it delivers a data
structure instead of a function is an unattractive option: we want to test the
software as it is and this does not solve the problem of testing the behavior
instead of the actual definition.

Testing functions for equal input output relations is relative easy. As example
we consider the function isAlpha and the function isUpperOrLower defined as

isUpperOrLower :: Char→ Bool

isUpperOrLower c = isUpper c || isLower c

Using G∀ST the equivalence of the functions isAlpha and isUpperOrLower can be
tested by stating a property stating that ∀c . isAlpha c = isUpperOrLower c. In
Clean this property reads:

propEq :: Char→ Bool

propEq c = isAlpha c == isUpperOrLower c

Testing this in G∀ST is done by executing Start = test propEq. G∀ST proves this
property by exhaustive testing: the function propEq is evaluated for all possible
characters. Since the number of characters is finite (and small), G∀ST is able to
test it for all possible arguments and to yield Proof rather than Pass (the latter
indicates a successful test for all arguments used).

In section 7 we show how this approach is used to compare parsers by applying
them to various inputs and comparing the results.
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3 Functions as Argument of Higher Order Functions

Testing properties over higher order functions that have functions as arguments
is a harder problem. In these properties there is a universal quantification over
functions. This implies that the test system must supply appropriate functions
as argument.

A typical example of a property over higher order functions is:

∀f, g : (x → y) . ∀l : [x] .map f (map g l) = map (f ◦ g) l.

For any test we need to choose concrete types for x and y. Choosing small finite
types like Bool or Char usually give good test results. The Clean version of this
property where all types are Char is:

propMap :: (Char→ Char) (Char→ Char) [Char ] → Bool

propMap f g l = map f (map g l) == map (f o g) l

Former versions of G∀ST where able to generate functions. The generated func-
tion of type X→ Y converts the argument x to an index in a list of values ys of
type Y: λx . ys !! (toIndex x rem length ys). For simple functions (like f and
g in propMap) this is adequate, but not for more complex functions (like continu-
ation parsers). Moreover, in the generic framework the generation of values and
the index function needs to be coupled. This slows down the generation of or-
dinary values considerably. For these reasons the existing generation of function
algorithm was removed from G∀ST.

Another serious problem is that the code of a given function cannot be shown.
This implies that if an counterexample would be found by G∀ST, it can only print
the argument f and g as <function>.

As a solution for the problem of generating functions and printing them we
propose to use a tailor made data structure that exactly determines the functions
that are needed in a particular test context. Instances of this data structure can
be generated by the default generic algorithm used in G∀ST. Since the data
type determines the needed functions exactly, the conversion from a generated
instance of the data type to the corresponding function is easy.

As example we will show how the property for the map function can be tested.
Apart from the library functions toUpper and toLower we will use the function
shift in the tests. The function shift shifts any character n places in the ascii
table. It is defined as:

shift :: Int Char→ Char

shift n c = toChar (abs (fromChar c + n) rem 256)

A data type representing all functions that we want to be generated as test
argument and the corresponding conversion function are defined as:

:: Fun = Shift Int | ToUpper | ToLower

class apply s t :: apply s→ t

instance apply Fun (Char→ Char)
where apply (Shift n) = shift n
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apply ToUpper = toUpper

apply ToLower = toLower

We will use the class apply for any transformation of a data type, s, to the
corresponding function of type, t, in this paper. Using a type class instead of
a set of functions with different names is that ons can use apply always if a
transformation is needed. The disadvantage is that we have to provide additional
type information in some circumstances to resolve the overloading.

Now we are able to test the property for the map function. Instances of the
type Fun are generated by the generic generation algorithm. Instances of this
data type are converted to functions by applying apply to them. In propMap2

we reuse propMap, the needed functions are obtained from the type Fun. Finally,
there is a Start-function initiating the testing.

propMap2 :: Fun Fun [Char ] → Bool

propMap2 f g l = propMap (apply f) (apply g) l

Start = test propMap2

This property passes any number of tests. In the next section we will show how
this principle can be applied to continuation parsers. In order to obtain more
complex parsers, the data type to represent functions will be recursive.

4 Testing Monads

Monads [10] are well-known higher order functions that can be used as a pro-
gramming pattern to handle state in a functional programming language. The
advantage of handling state in a program by a monad is that it is much easier
to change the type of this state without having a significant impact on parts of
the program using this state.

As a bare minimum a monad contains just the function unit to convert a
value to a monad containg this value, and the operator>>= (called bind) to pass
the state between two state manipulating functions. Such a monad is defined by
the type constructor class Monad:

class Monad m

where unit :: a→ (m a)
(>>=) infixl 1 :: (m a) (a→ (m b)) → (m b)

A typical example of the use of monads is found in the expression unit 3 >>=

λa.unit (a+a) >>=λb.unit (2*a*(b+1)). The subexpression unit 3 constructs the
initial state containing the value 3. Next, the subexpression λa.unit (a+a) re-
trieves this value from the state and stores the new value 6 (computed by
a+a where a=3). Finally, λb.unit (2*a*(b+1)) retrieves the current value, 6, from
the state, binds it to b and stores the value 42. Note that in the computation of
the last value both the first and second value of the state are used.
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This expression allows the use of many implementations of the monad without
changes. A typical example is a state where the value is stored in a list1.

instance Monad [ ]
where unit a = [a ]

(>>=) m f = [e \\ l ← m , e ← f l ]

As an alternative monad implementation we introduce a state monad that count
the number of changes of its state in an integer that is silently passed from one
monad state to the next.

:: CountMonad a = CM (Int→ (a ,Int))

instance Monad CountMonad

where unit a = CM λx.(a ,x+1)
(>>=) (CM m) f = CM (λx. let (a ,y) = m x ; (CM g) = f a in g y)

Based on category theory one imposes the following laws on their behavior:

∀ a, f . unit a>>=f = f a (1)
∀m, a .m>>=λ.unit a = m (2)

∀m, f, g .m>>=(λx . f x>>= g) = (m>>= f)>>= g (3)

We want to use these laws in order to test whether the given implementations
of the type class Monad are correct. The first step is to express the laws in G∀ST:

leftUnit :: a (a → m b) → Bool | Monad m & == (m b)
leftUnit a f = (unit a >>= f) == f a

rightUnit :: (m b) a→ Bool | Monad m & == (m b)
rightUnit m a = (m >>= λa.unit a) == m

associative :: (m a) (a→ m a) (a→ m a) → Bool | Monad m & == (m a)
associative m f g = (m >>= (λx.f x >>= g)) == ((m >>= f) >>= g)

The type restrictions Monad m & == (m b) states that m must be in the type class
Monad and the equality must be defined for elements of type b.

This leaves the task to generate monads of type m a and functions of type
a→ m a. We use the approach outline above, we define a data type representing
the necessary functions and instances of apply for the transformations needed.
In order to avoid a tricky game with type variables and restrictions on them, we
restrict us to monads containing integers. The data types used are:

:: M = Unit Expr | Bind M M

:: Expr = Var | Const Int | Plus Expr Expr | Times Expr Expr

Generation of instances of these types can be derived from the generic algoritm:

derive ggen Expr , M

1 Usually one define more operators for monads. These operators enable also states
with other numbers of values than exactly one as in this simple example.
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The instances of apply are:

instance apply M (Int→ (m Int)) | Monad m where apply m = applyM m

applyM :: M→ (Int→ (m Int)) | Monad m

applyM (Unit e) = λx.unit (apply e x)
applyM (Bind f g) = λx.applyM f x >>= applyM g

instance apply Expr (Int→ Int)
where apply (Const i) = λx.i

apply Var = λx.x
apply (Plus n m) = λx.apply n x+apply m x

apply (Times n m) = λx.apply n x*apply m x

In order to test whether the law leftUnit holds for monads of type list we define:

testLeftUnit :: Int M→ Bool

testLeftUnit i m = leftUnit i f

where f :: (Int→ [Int ] )
f = apply m

Similar properties are specified for the other laws. Testing show that the monad
[ ] passes these tests. In order to test the state monad CountMonad we have to
change the property of f in testLeftUnit to Int→ CountMonad Int. Moreover we
provide an instance of equality for CountMonad:

instance == (CountMonad x) | == x

where (==) (CM f) (CM g) = a == b && n == m

where (a ,n) = f i ; (b ,m) = g i ; i=0

The properties leftUnit and rightUnit does not hold for the count monad: the
additional unit is counted and spoils the equality. G∀ST report counterexamples
of leftUnit for values like 0 and unit x. When we exclude the hidden counter
from the equality for CountMonad (by defining (==) (CM f) (CM g) = a == b), the
property passes any number of tests. This shows that the CountMonad behaves
as a decent monad apart from its hidden counter. Although this result in itself
might not be new or surprising, the ability to determine it by automatically
generated test cases is new.

5 Background: Continuation Based Parser Combinators

In order to make this paper self contained we repeat the most important parser
combinators from [4]. In the continuation parser library [4] each continuation
parser has four arguments:

1. The success continuation which determines what will be done if the current
parser succeeds. This function gets the result of the current parser, the other
continuations and the remaining input as its arguments.

2. The XOR-continuation is a function that tells what has to be done if only a
single result of the parser is needed.

3. The OR-continuation determines the behavior when all possible results of
the parser are needed.
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4. The list of symbols to be parsed. In this paper these symbols will be char-
acters, but also lists of more complex tokens can be parsed.

The result of a parser is a list of tuples containing the remaining input and the
results of parsing the input until this point. This is reflected in the types:

:: Parser s r :== [s ] → ParsResult s r

:: ParsResult s r :== [ ( [s ] ,r) ]

:: CParser s r t:==(SucCont s r t) (XorCont s t) (AltCont s t) → Parser s t

:: SucCont s r t:==r (XorCont s t) (AltCont s t) → Parser s t

:: XorCont s t :==(AltCont s t) → ParsResult s t

:: AltCont s t :==ParsResult s t

As an example the type of the continuation parser ast = symbol ’*’, that suc-
ceeds if the first character in the input is *, is CParser Char Char a. Expanding
this type to basic types yields:

ast::((Char→( [ ( [Char ] ,a) ]→[ ( [Char ] ,a) ] )→[ ( [Char ] ,a) ]→[Char ]→[ ( [Char ] ,a) ] )
→ ( [ ( [Char ] ,a) ]→[ ( [Char ] ,a) ] ) → [ ( [Char ] ,a) ] → [Char ] → [ ( [Char ] ,a) ] )

This complicated type indicates that testing for first order properties is inade-
quate. The definition of the parser combinator symbol is:

symbol :: s→ CParser s s t | == s

symbol s = psymbol

where psymbol sc xc ac [x:ss ] | x == s = sc s xc ac ss

psymbol sc xc ac _ = xc ac

The function begin turns a continuation parser into a standard parser by pro-
viding appropriate initial continuations. The parser takes a list of tokens as
arguments and produces a list of successes. Each success is a tuple containing
the remaining input tokens and the parse result.

begin :: (CParser s t t) → Parser s t

begin p = p (λx xc ac ss . [ (ss ,x):xc ac ] ) id [ ]

The result of applying begin ast to the input [’*abc’ ] will be [ ( [’abc’ ] ,’*’) ] ,
while applying it to the input [’abc’ ] yields the empty list of results.

The concatenation of two parsers, p <&> q, requires that the parser q is applied
to the rest of the input left by the parser p. This is done by inserting q in the
success continuation of p. The result of p is given as the first argument to q.

(<&>) infixr 6 :: (CParser s u t) (u→ CParser s v t) → CParser s v t

(<&>) p q = λsc . p (λt . q t sc)

There are several variants of the operator <&>: the operator <& yields only the
result of p, &> yields only the result of q, <:&> constructs a list with the result of
p as head and the result of q as tail, <++> appends the results of p and q, <!&>
removes the XOR-alternatives if p succeeds.

The construct p <|> q indicates that we want all results of p and all results
of q. This is achieved by putting q in the alternative continuation ac of p.
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(<|>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<|>) p q

= λ sc xc ac ss .p (λx xc1.sc x id) id (q (λx xc1.sc x id) xc ac ss) ss

The operator <!> yields only the result of q if p has no results. This is done by
putting q in the XOR-continuation xc of p. The success continuation of p takes
care of removing q if p succeeds.
(<!>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<!>) p q = λ sc xc ac ss

.p (λx xc2.sc x id) (λ_.q (λx xc3.sc x id) xc ac ss) ac ss

The combinator <@ applies the function f to the items recognized by parser p.

(<@) infixl 5 :: (CParser s r t) (r→ u) → CParser s u t

(<@) p f = λ sc . p (sc o f)

The operator <*> mimics the Kleene star: it repeats parser p as often as possible.
The results of all applications of p are collected in a list. It behaves like:

<*> :: (CParser s r t) → CParser s [r ] t

<*> p = (p <&> λr . <*> p <@ λrs . [r:rs ] ) <!> yield [ ]

For efficiency reasons the actual implementation used is different.

6 Testing Basic Combinators

The parser combinator library contains a number of basic combinators for tasks
like recognizing symbols in the input and yielding specific values. As an exam-
ple we consider the parser combinator symbol :: s→ CParser s s t | == s that
should recognize the given symbol s in the input. A desirable property of symbol
is that it yields a single success when the input list starts with the given symbol.
For characters as input tokens, this can be specified in G∀ST as:

propSymbol :: Char [Char ] → Bool

propSymbol c l = begin (symbol c) [c:l ] == [(l ,c) ]

Using begin (symbol c) instead of symbol c in the test makes it possible to com-
pare parse results (lists of tuples), instead of comparing higher order functions.

The property propSymbol can be tested directly by G∀ST by applying the
function test to the property in the Start-function. The result of the test is that
it passes any number of tests. When we restrict the input to, for instance, lists
of two characters such a property can even be proven. The property for inputs
of exactly two character reads:

propSymbol2 :: Char Char→ Bool

propSymbol2 c d = begin (symbol c) [c ,d ] == [ ( [d ] ,c) ]

Within a split second G∀ST proves this property by executing all possible tests.
All measurements in this paper are done on a fairly moderate PC running the
latest windows XP, Clean 2.1.1 and G∀ST 0.5.1.

Although this kind of property states clearly the intended semantics of the
basic parser combinators and the associated tests are useful, this does not capture
the signaled problems with the combinator library.
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7 Testing Parser Combinators

For parser combinators that compose continuation parsers, one can specify prop-
erties in the way just explained. For example the result of applying p <|> q to
some input is equal to the concatenation of results from p to the same input and
applying q to that input. Stated as property for G∀ST this is:

propOR p q input = begin (p <|> q) input == begin p input ++ begin q input

The generation of continuation parsers needed as arguments p and q is again
done with a data type and a corresponding instance of apply. The type P is a
recursive data type that represents parsers that consumes lists of characters and
yield a character as result.

:: P = Fail // basic operator: fails for any input
| Yield Sym // basic operator: yields the specified symbol for any input
| Symbol Sym // basic operator: recognize the specified symbol, see above
| Or P P // concatenation of the successes of both parsers
| XOr P P // successes of second parser if first parser fails

:: Sym = Char Char // Symbols are just constructor Char and a character

The generation of instances of these data types is straightforward. The default
generic generation algorithm ggen of G∀ST is used for the data type P representing
the structure of the parser. For the type Sym we use only the characters ’a’ and
’b’ in order to limit the number of characters used in the tests. This increases
the number of more complicated parses used in a finite number of tests.

derive ggen P

ggen {|Sym |} n r = [Char ’a’ , Char ’b’ ]

The instance of apply that transforms elements of type P to the corresponding
continuation parsers is straightforward:

instance apply P (CParser Char Char Char)
where

apply Fail = fail

apply (Yield (Char c)) = yield c

apply (Symbol (Char c)) = symbol c

apply (Or p q) = apply p <|> apply q

apply (XOr p q) = apply p <!> apply q

The property to test the parser combinator <|> using the type P becomes:

propOR :: P P [Char ] → Bool

propOR x y chars = begin (p <|> q) chars == begin p chars ++ begin q chars

where p = apply x ; q = apply y

Since the continuation parsers x and y are now represented by instances of the
data type P, printing them by the generic mechanism of G∀ST reveals the struc-
ture of the combinator parsers used in the actual test clearly. If desired we can
make a tailored instance of genShow {|P |} that prints the data type exactly as the
functions generated by apply, instead of deriving the default behavior.
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Testing such a property in G∀ST is quick. Testing this property for the first
1000 combinations of arguments takes only half a second.

In the same spirit we can test the other combinators in the original combinator
library. For instance the xor-combinator, <!>, only applies the second parser if
the first one fails. This is expressed by the property propXOR:

propXOR :: P P [Char ] → Bool

propXOR x y chars

| isEmpty (begin p chars)
= begin (p <!> q) chars == begin q chars

= begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

Testing this property reveals the problems with the original parser combinator
library. One of the counterexamples found is for (Or (Yield (Char ’b’)) Fail) as
the value of x, (Yield (Char ’a’)) for y, and the empty input [ ] . The problem is
that begin ((yield ’b’ <|> fail) <!> yield ’a’) [ ] produces the result [’ba’ ]

instead of the desired result [’b’ ] . This is equivalent to the reported error that
initiates this research. Since this is a unusual combination of parser combinators
its in not strange that this issue was not discovered during manual tests and
ordinary use of the library.

7.1 Repetition of Parsers

The parsers generated and tested above do not contain the repetition opera-
tors <*>. Although it is easy to add the desired constructors to the type P and
the function apply, certain instances of the generated parsers can cause serious
problems. For example, the parser <*> (yield ’a’) will produce an infinite list
of ’a’s without consuming input.

We only want to incorporate parsers containing proper applications of the
operator <*> in our tests. This implies that we either have to prevent that parsers
causing problems (by designing a more sophisticated data type), or we have
to prevent that they are actually used in the tests (by a precondition in the
property). Both solutions are feasible, but the selection of parsers that behave
well is somewhat simpler and will be used here. Selection of well behaving parsers
is done by inspection of the corresponding data structure and the operator =⇒
from G∀ST.

First we add appropriate clauses to the type P and the function apply. Since
we have now a repetition it is more convenient to generate a parser that yields
the list of all generated and recognized characters, than a parser yielding a single
characters as we used above.

:: P = Fail | Yield Sym | Symbol Sym | Or P P | XOr P P | AND P P | Star P

instance apply P (CParser Char [Char ] [Char ] )
where apply Fail = fail

apply (Yield (Char c)) = yield [c ]
apply (Symbol (Char c)) = symbol c <@ (λc=[c ] )
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apply (Or p q) = apply p <|> apply q

apply (XOr p q) = apply p <!> apply q

apply (AND p q) = apply p <++> apply q

apply (Star p) = (<*> (apply p)) <@ flatten

Generated parsers will not cause problems if they are finite. A parser is finite if
it does not contain the parser combinators <*>:

finite :: P→ Bool

finite (Or p q) = finite p && finite q

finite (XOr p q) = finite p && finite q

finite (AND p q) = finite p && finite q

finite (Star p) = False

finite other = True

Parsers that need to consume input in order to produce a result are also safe.

consuming :: P→ Bool

consuming (Symbol c) = True

consuming (Or p q) = consuming p && consuming q

consuming (XOr p q) = consuming p && consuming q

consuming (AND p q) = consuming p && consuming q

consuming (Star p) = consuming p

consuming other = False

These predicates allow us to define a class of parsers that will not produce infinite
results without consuming input as:

notInfiniteNonConsuming :: P→ Bool

notInfiniteNonConsuming (Star p) = consuming p

notInfiniteNonConsuming p = consuming p || finite p

Experiments show that a little less than 8% of the generated parsers will be
rejected by this predicate. Using this predicate the property for the parser com-
binator <!> can be reformulated for parsers with repetition as:

propXOR2 :: P P [Char ] → Property

propXOR2 x y chars

= notInfiniteNonConsuming x && notInfiniteNonConsuming y

=⇒ case begin p chars of
[ ] = begin (p <!> q) chars == begin q chars

_ = begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

Despite the fact that there are more different parsers generated, this property
produces a counterexample indicating an error as test case 202 (the actual num-
ber depends on the pseudo random streams used in the test data generation).

8 Input Generation

Apart from controlling the functions used in the properties over HOFs, it is
possible to control the generation of ordinary types used in properties over HOFs.
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In our running example of parser combinators we used the type [Char ] as
input for the parsers. G∀ST will generate list of characters containing all 98
printable characters from the empty list to longer and longer lists. Although
the test introduced above appear to be effective they can be improved. The
parsers are generated in such a way that only the characters ’a’ and ’b’ will be
accepted (by the definition of ggen {|Sym |} ). This implies that about 98% of the
input symbols will be rejected by each instance of the parser combinator symbol.
This can be improved by generating lists of characters with a limited number of
characters. Without changing the instance for ggen {|Char |} in the library this
can be achieved by the introduction of an additional data type and a user defined
instance of ggen.

:: InputList = Input [Char ]

ggen {|InputList |} n r = map Input l

where l = [ [ ] : [ [c:t ] \\ (c ,t) ← diag2 [’a’..’c’ ] l ] ]

The character ’c’ is included to ensure that there are input symbols that need to
be reject by any consuming parser. In each use we have to remove the constructor
Input from the generated input. For example:

propXORInput :: P P InputList→ Property

propXORInput x y (Input chars)
= notInfiniteNonConsuming x && notInfiniteNonConsuming y

=⇒ case begin p chars of
[ ] = begin (p <!> q) chars == begin q chars

_ = begin (p <!> q) chars == begin p chars

where p = apply x ; q = apply y

This test appears indeed to be more effective. For this property G∀ST founds
319 counterexamples in the first 10, 000 tests. Using propXOR ’only’ 136 coun-
terexamples are found in this number of tests. For this property this does not
matter much, one counterexample is enough to invalidate a property. In general
this indicates that this algorithm yields more effective tests.

8.1 Generating Inputs That Should Be Accepted

In order to test whether a parser accepts the inputs it should accept, it is suffi-
cient to use only inputs that should be accepted by the tested parser. Since we
have the parsers available as data structure, it is not difficult to generate such
inputs. The function PtoInput produces a list of inputs to be accepted by the
parser corresponding to the given data structure of type P.

PtoInput :: P→ [ [Char ] ]
PtoInput Fail = [ ]
PtoInput (Yield (Char c)) = [ [ ] ]
PtoInput (Symbol (Char c)) = [ [c ] ]
PtoInput (Or p q) = removeDup (PtoInput p ++ PtoInput q)
PtoInput (XOr p q) = removeDup (PtoInput p ++ PtoInput q)
PtoInput (AND p q) = [i++j \\ i←PtoInput p , j←PtoInput q ]
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PtoInput (Star p) = take maxIter l

where l = [ [ ] : [ i++t \\ (i ,t) ← diag2 (PtoInput p) l ] ]

maxIter = 10

The only point of interest are the repetition constructors Star. Here the inputs
are limited to maxIter repetitions of the input corresponding to the argument of
the repetition operator. There are two reasons for this.

First, if the parser handles inputs up to maxIter repetitions correctly for some
decent value of maxIter, it is highly likely that all higher number of repetitions
will be handled correctly. Test corresponding to more repetitions of the same
input will not be very effective. In fact, also a much smaller value of maxIter,
like 2 or 3, can be used.

Second, strange parsers and long inputs can produce enormous amounts of
results. This is time and space consuming, but not a very effective test. As
example we consider the parser <+> (symbol ’a’ <|> symbol ’a’). Each symbol
’a’ will be recognized in two different ways. If this parser is applied to a list of
n characters ’a’, the result will be a list of 2n identical parse results. In order to
keep testing effective we either have to remove these kind of parsers, or prevent
very large inputs for such a parser. Since we do want to exclude this kind of
parsers, we have chosen to limit the size of the associated inputs.

As example of the use of the generation of inputs that have to be accepted
we use again the property for <!> combinator:

propXOR3 :: P P→ Property

propXOR3 x y = propXOR2 x y For PtoInput (XOr x y)

For the first 10, 000 test cases we find now 916 counterexamples. This indicates
that testing with inputs that should be accepted is even more effective as testing
with pseudo random input constructed by the type InputList.

9 Direct Testing of Complete Parsers

Above we have shown how individual parser combinators are tested effectively.
This requires that at least one property is stated for each parser combinator. In
this section we will show that we can also test a large set of parser combinators
in one go. The idea is to construct a very simple direct parser. Given an instance
of the type P and an input, this parser should produce all desired results.

Given a grammar and an input, it is easy to determine what the result of the
parser described in section 7.1 should be:

results :: P [Char ] → [ ( [Char ] , [Char ] ) ]
results Fail chars = [ ]
results (Yield (Char c)) chars = [(chars , [c ] ) ]
results (Symbol (Char c)) [d:r ] | c == d = [(r , [ c ] ) ]
results (Symbol (Char c)) chars = [ ]
results (Or p q) chars = results p chars ++ results q chars

results (XOr p q) chars = case results p chars of



162 P. Koopman and R. Plasmeijer

[ ] = results q chars

r = r

results (AND p q) chars

= [(c3 ,r1++r2) \\ (c2 ,r1)←results p chars , (c3 ,r2)←results q c2 ]
results (Star p) chars = repeatP p [ (chars , [ ] ) ]

repeatP p res

= case [ (c2 ,r1++r2) \\ (c1 ,r1) ← res , (c2 ,r2) ← results p c1 ] of
[ ] = res

r = repeatP p r

This simple parser is less efficient that the parser combinator library and less
flexible, but for the set of constructors defined by the type P it yields the list of
all recognized tokens.

Using this function it is possible to state a property that has to hold for any
parser that corresponds to an instance of P: the result of transform p to a parser
and applying it to an input i should be identical to results p i. That is:

propPI :: P [Char ] → Property

propPI p i = notInfiniteNonConsuming p =⇒ results p i == begin (apply p) i

Also here we can limit the inputs to the character lists that should be accepted
by the parser:

propP :: P→ Property

propP p = notInfiniteNonConsuming p =⇒ (propPI p For PtoInput p)

This general property finds counterexamples corresponding to the reported prob-
lem in the original version of the library quickly. Since this property is more general
it is not surprising that this property needs somewhat more tests to find a coun-
terexample. After 279 test G∀ST reports the counterexample (XOr (Or (Yield
(Char ’a’)) (Symbol (Char ’a’))) (Yield (Char ’a’))) []. This is basically
the same error as reported above. G∀ST needs less than one second to find this
error.

After repairing this error we tested to library again with PropP. To our sur-
prise an additional counterexample was found within 2 seconds. G∀ST reports:
Counterexample found after 791 tests: (Star (Or (Symbol (Char ’a’))
(Symbol (Char ’a’)))) [’a’]. The error is caused by an erroneous optimiza-
tion in the parser combinator <*>. It appears that the parser <*> (symbol ’a’

<|> symbol ’a’) yields only one result for the input repeat n ’a’, instead of the
desired 2n identical results.

After correction of this error no new issues were found in an additional 30, 000
tests. This takes 2.4 seconds. In order to verify the error detecting capacity of
this approach we made, by hand, 25 mutants of the library that are approved
by the type system. Testing these incorrect libraries revealed counterexamples
for each of these libraries within 2 seconds.

The final set of parser combinators can be found in the appendix.
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10 Conclusion

Test systems like Quickcheck and G∀ST are very suited to test properties over
first order functions [2,5]. Testing higher order functions was troublesome, since
they have functions instead of data types as argument and result. The functions
yielded by a higher order function are tested by supplying arguments until a
data type is obtained. Until now test systems were able to generate functions
as test argument in a primitive and unguided way. In this paper we have shown
that the functions needed as argument can be generated by defining a data type
representing the grammar for the desired functions, and a simple function that
transforms this data type to the corresponding function. This is a reinvention of
ideas similar to Reynolds defunctionalisation from 1972.

By using this technique for a library of parser combinators the test system
has found a reported error as well as an until now unknown error. Since the
errors occur for unusual combinations of parser combinators it is not strange
that the errors were not discovered during manual testing and ordinary use of
the library. Also 25 errors injected deliberately in order investigate the power
of automatic testing are found within seconds. This indicates that this way of
automatic testing is effective and efficient. Developing appropriate properties
and associated data types takes time. Developing data types and the required
instances can be done nearly systematically, as soon as the required functions
are known. The efficient execution of the automatic tests themselves makes it
possible to execute them frequently during the development of programs.

Our approach can be used in any situation where higher order functions needs
to be tested, or even where systematically generated functions are needed. In this
paper we have show the application of this approach to simple properties over
map (see section 3), more advanced monad laws (see section 4), and an parser
library as large example.
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pointed out the relation of our intermediate data types and defunctionalisation.
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A Improved Parser Combinator Definitions

This appendix contains the changed and tested version of the parser combinators.
The types used are unchanged. The most important change is that the role of
the OR-continuation and the XOR-continuation is swapped in order to get the
behavior both or-combinators correctly. The basic operators fail, yield and
symbol are basically unchanged. The definitions are slightly changed in order to
reflect the change in role of the continuations xc and ac.

symbol :: s→ CParser s s t | == s

symbol s = psymbol

where psymbol sc xc ac [x:ss ] | x == s = sc s xc [ ] ss

psymbol sc xc ac _ = xc ac

Both choice combinators also reflect the change of role of the continuations. The
combinator <|> inserts the second parser in the continuation of p with alterna-
tives that are always taken. The <!> operator inserts q in the other continuation
and changes the the other or-combinator such that it checks for results.

(<|>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<|>) p q = λsc xc ac ss = p sc (λac3 = q sc xc ac3 ss) ac ss

(<!>) infixr 4 :: (CParser s r t) (CParser s r t) → CParser s r t

(<!>) p q = λsc xc ac ss

= p sc (λac2 = i f (isEmpty ac2) (xc [ ] ) ac2) (q sc xc ac ss) ss

The and-combinator for the composition of parsers is now:

(<&>) infixr 6 :: (CParser s u t) (u→ CParser s v t) → CParser s v t

(<&>) p q = λsc xc ac ss→ p (λt xc1 ac1→ q t sc xc1 ac) xc ac ss

The definition of all variants of this operator (like <&, &>, and <++>) is not changed.
From the repeat operators <*> and <+> we removed the error by deleting the

erroneous optimization in ClistP.

<*> :: (CParser s r t) → CParser s [r ] t

<*> p = ClistP p [ ]

ClistP :: (CParser s r t) [r ] → CParser s [r ] t

ClistP p l = (p <!&> λr→ ClistP p [r:l ] ) <!> yield (reverse l)
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Abstract. The abstract domain of polyhedra is sufficiently expressive
to be deployed in verification. One consequence of the richness of this
domain is that long, possibly infinite, sequences of polyhedra can arise
in the analysis of loops. Widening and narrowing have been proposed to
infer a single polyhedron that summarises such a sequence of polyhedra.
Motivated by precision losses encountered in verification, we explain how
the classic widening/narrowing approach can be refined by an improved
extrapolation strategy. The insight is to record inequalities that are thus
far found to be unsatisfiable in the analysis of a loop. These so-called
landmarks hint at the amount of widening necessary to reach stability.
This extrapolation strategy, which refines widening with thresholds, can
infer post-fixpoints that are precise enough not to require narrowing. Un-
like previous techniques, our approach interacts well with other domains,
is fully automatic, conceptually simple and precise on complex loops.

1 Introduction

In the last decade, the focus of static analysis has shifted from program optimi-
sations towards program verification [5]. In this context, the abstract domain of
polyhedra [2,10] has attracted much interest due to its expressiveness, as have
sub-classes of polyhedra [18,19,21,22] that solve specific analysis tasks more ef-
ficiently. However, an inherent problem in polyhedral analysis is the ability to
finitely reason about loops. Since the values of variables may differ in each iter-
ation, each iterate may well be described by a different polyhedron. In order to
quickly analyse a large or potentially infinite number of iterations, special accel-
eration techniques are required. One such acceleration framework is provided by
the widening/narrowing approach to abstract interpretation [9,10].

1.1 A Primer on Widening/Narrowing

In order to illustrate the widening/narrowing approach on the domain of polyhe-
dra and to discuss the implications of applying narrowing in an actual analyser,
consider the control flow graph of for (i=0; i<100; i++) {/*empty*/}:

i<100i=0
/* empty */

i++

+

yes

no

P

Q

S

T

R
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The analysis amounts to characterising the values that can arise on the edges
of the control flow graph. To this end, each edge is decorated with a polyhe-
dron describing the relationships between the values of the variables on that
edge. Given that the program contains only a single variable i, the polyhedra
P,Q,R, S, T coincide with intervals over the reals. In the example, the polyhe-
dron P = {i ∈ R | 0 ≤ i ≤ 0} describes the value of i at the beginning of
the program. The +-node joins the polyhedra P and T to obtain Q = P , T .
This join corresponds to the smallest convex polyhedron that includes the set
of points P ∪ T . Due to the integrality of i, the polyhedra that characterise
the two outcomes of the test i < 100 are R = Q + {i ∈ R | i ≥ 100} and
S = Q+{i ∈ R | i ≤ 99} where + = ∩ denotes the intersection of two polyhedra.
The last polyhedron T is characterised by the affine map T = {i + 1 | i ∈ S}.

A solution of these equations can be found by applying Jacobi iteration [8],
which calculates new polyhedra Pj+1, Qj+1, Rj+1, Sj+1, Tj+1 from the polyhe-
dra of the previous iteration Pj , Qj , Rj , Sj , Tj . To ensure rapid convergence, a
widening point must be inserted into the Q,S, T cycle. Widening at Q amounts
to replacing the equation for Q with Qj+1 = Qj∇(Pj,Tj) where ∇ is a widening
operator that removes unstable bounds [9]. The possible values of i are given
below where ⊥ denotes the empty set; the updated entries are shown in bold:

j Pj Qj Rj Sj Tj

1 [0,0] ⊥ ⊥ ⊥ ⊥
2 [0, 0] [0,0] ⊥ ⊥ ⊥
3 [0, 0] [0, 0] ⊥ [0,0] ⊥
4 [0, 0] [0, 0] ⊥ [0, 0] [1,1]
5 [0, 0] [0,∞] ⊥ [0, 0] [1, 1]

j Pj Qj Rj Sj Tj

6 [0, 0] [0,∞] [100,∞] [0,99] [1, 1]
7 [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
8 [0, 0] [0,∞] [100,∞] [0, 99] [1, 100]
1’ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
2’ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]

In iteration 5, the output of the +-node is P4,T4 = [0, 1]. The widening operator
compares P4 , T4 against Q4 = [0, 0] and removes the unstable upper bound,
yielding Q5 = [0,∞]. Stability is reached in iteration 8. The calculated post-
fixpoint is now refined. This is realised by replacing widening with narrowing,
i.e. Qj+1 = Qj�(Pj , Tj). For polyhedra, it is sufficient to put � = + and to
bound the number of iterations [9, page 290]. Hence, let Qj+1 = Qj + (Pj , Tj)
which yields a refined state 1’ and a further refinement 2′ which, in this case,
coincides with the least fixpoint of the original equations.

1.2 The Limitations of Narrowing

To illustrate one drawback of narrowing, consider a re-analysis of the above
example where the widening is applied on S rather than on Q. In particular, let
Sj+1 = Sj∇(Qi+{i ∈ R | i ≤ 99}). The analyses differ after the first 4 iterations:

j Pj Qj Rj Sj Tj

5 [0, 0] [0, 1] ⊥ [0, 0] [1, 1]
6 [0, 0] [0, 1] ⊥ [0,∞] [1, 1]
7 [0, 0] [0, 1] ⊥ [0,∞] [1,∞]
8 [0, 0] [0,∞] ⊥ [0,∞] [1,∞]
9 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]

j Pj Qj Rj Sj Tj

10 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]
1’ [0, 0] [0,∞] [100,∞] [0,99] [1,∞]
2’ [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
3’ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
4’ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]
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In the first analysis, only the polyhedra Q and R are larger before narrowing
commences. In the second analysis, S and T are also larger before narrowing. To
illustrate the impact of this in the context of verification, suppose /*empty*/ is
replaced by b = array[i] where array has 100 elements. To avoid an avalanche
of false warning messages it is common practise to intersect S with the legal
range of the index i [5], in this case 0 ≤ i ≤ 99, yielding the polyhedron S′,
and thereafter use S′ instead of S. Moreover, since the out-of-bounds check
amounts to the subsumption test S �⊆ S′, it is straightforward to perform the
check during fixpoint calculation; the test could be postponed until a fixpoint
is reached, but this would require S′ to be recalculated unnecessarily. However,
this technique does not combine well with narrowing since a warning is issued if
S is nominated for widening rather than Q, i.e. the placement of the widening
point can determine whether a warning is issued or not.

Another implication of reducing a post-fixpoint with narrowing relates to
domain interaction. Assume that the array above is embedded into a C structure
declared as struct { int[100] array; int* p } s; and that the loop body
is changed to b = s.array[i]. Consider again the second analysis in which S
is widened to [0,∞] so that the upper bound of the array index i is lost. In this
case, a points-to analysis [17,23] would generate a spurious l-value flow from s.p
to b. Once narrowing infers 0 ≤ i < 100 it is desirable to remove this spurious
flow. Alas, points-to analyses are typically formulated in terms of either closure
operations [17] or union-find algorithms [23], none of which support the removal
of flow information. Thus, even if narrowing can recover precision in one domain,
the knock-on precision loss induced in other domains may be irrecoverable.

Furthermore, narrowing on polyhedra [9] cannot recover precision if the loop
invariant is expressed as a disequality [5]. For instance, narrowing has no effect
if the loop invariant in the example is changed from i<100 to the equivalent
i!=100. Since it is unrealistic to modify the program under test, a substitute for
narrowing is required to analyse programs with disequalities as loop conditions.

1.3 Our Contribution to Widening/Narrowing

Rather than recovering inequalities through narrowing that were widened away,
our contribution is to use unsatisfiable inequalities as oracles to guide the fixpoint
acceleration. Specifically, we propose widening with landmarks, which records in-
equalities that were found to be unsatisfiable in two consecutive iterates. We then
extrapolate to the first iterate that makes any of these inequalities satisfiable. If
this extrapolation is not a fixpoint, we continue until no unsatisfiable inequal-
ities remain, at which point standard widening is applied [1,14]. The rationale
for observing unsatisfiable inequalities is that the transition from unsatisfiable
to satisfiable indicates a change in the behaviour of a program. Widening with
landmarks is similar in spirit to widening with thresholds [5]. In this related
approach, the value of an unstable variable is extrapolated to the next threshold
from a set of user-supplied values. Rather than guiding widening with thresholds
on individual variables, our approach automatically extracts linear inequalities
from the program which bound the degree of extrapolation.
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After introducing notation for polyhedra manipulation, Section 3 presents a
worked example of a string buffer analysis that conveys the ideas behind widening
with landmarks. Sections 4 and 5 formalise the notion of landmarks which are
used in Section 6 to define an extrapolation strategy. Section 7 comments on our
implementation and explains how widening with landmarks can be added to an
existing analysis. We discuss related work in Section 8 and conclude in Section 9.

2 Preliminaries

Let x = 〈x1, . . .xn〉 denote an ordered set of variables, let Lin denote the set
of linear expressions of the form a · x where a ∈ Zn and let Ineq denote the
set of linear inequalities a · x ≤ c where c ∈ Z. Moreover, let e.g. 6x3 ≤ x1 + 5
abbreviate 〈−1, 0, 6, 0, . . . 0〉 · x ≤ 5 and let e.g. x2 = 7 abbreviate the two
opposing inequalities 7 ≤ x2 and x2 ≤ 7. Each inequality a·x ≤ c ∈ Ineq induces
a half-space [[a · x ≤ c]] = {x ∈ Rn | a · x ≤ c}. Each finite set of inequalities
I = {ι1, . . . ιm} ⊆ Ineq induces a closed, convex polyhedron [[I]] =

⋂m
i=1[[ιi]].

Let Poly = {[[I]] | I ⊆ Ineq , |I| ∈ N} denote the set of all (finitely generated)
polyhedra. Given two polyhedra Pi = [[Ii]], i = 1, 2, define P1 + P2 = [[I1 ∪ I2]]
and let P1 $ P2 iff [[I1]] ⊆ [[I2]]. Let P1 , P2 = +{P ∈ Poly | P1 $ P ∧ P2 $ P};
equivalently let P1 ,P2 = cl(hull(P1 ∪P2)) where cl denotes topological closure
and hull is the convex hull operation on sets of points [10]. A set of inequalities
I ⊆ Ineq is said to be unsatisfiable if [[I]] = ∅, otherwise it is satisfiable. The
lattice 〈Poly ,$,+,,〉 contains infinite ascending chains P1 $ P2 $ P3 . . . so that
standard Kleene iteration [9] may not converge onto a fixpoint in finite time. To
guarantee convergence, widening operators ∇ : Poly × Poly → Poly have been
proposed for Poly which are required to satisfy the following properties [10]:

1. ∀x, y ∈ Poly . x $ x∇y
2. ∀x, y ∈ Poly . y $ x∇y
3. for all increasing chains x0 $ x1 $ . . ., the increasing chain defined by

y0 = x0 and yi+1 = yi∇xi+1 is ultimately stable.

Besides the standard lattice operations, we introduce a family of projection op-
erators ∃xi

: Poly → Poly such that ∃xi
(Q) = {〈x1, . . . , xi−1, x, xi+1, . . .xn〉 |

〈x1, . . .xn〉 ∈ Q, x ∈ R}. Intuitively, ∃xi
(Q) removes any information pertain-

ing to xi from the polyhedron Q ∈ Poly . This is useful to model assignment,
e.g. ∃xi

(Q) + [[{xi = 42}]] updates the value of xi to 42. Finally, in order
to find the minimum value of an expression a · x such that x ∈ P , we in-
troduce the operation min : Lin × Poly → (Z ∪ {−∞}). To this end, let
C = {c ∈ Z | P + [[{a · x ≤ c}]] �= ∅}, that is, C contains all constants c
such that the half-space defined by a · x ≤ c intersects with P , and define

min(a · x, P ) =
{

min(C) if min(C) exists
−∞ otherwise.

Observe that min(a · x, P ) can be realised with Simplex: if there exists y ∈ Rn

that minimises the expression a · y over P , then put min(a · x, P ) = -a · y.,
otherwise put min(a · x, P ) = −∞.
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3 Worked Example from String Buffer Analysis

In this section we explain the ideas behind widening with landmarks in the
context of an example drawn from string buffer analysis. Consider the following
loop which is naturally produced by a C compiler translating while (*s) s++;.

char s[32] = "the�string";
int i = 0;
while (true) {

c = s[i];
if (c==0) break;
i = i+1;

};

The task is to check that the string buffer s is only accessed within bounds. This
program is challenging for automatic verification because the loop invariant is
always satisfied and the extra exit condition within the loop does not mention
the loop counter i. In C, a string is merely an array of bytes, in this case s is an
array of 32 bytes. The string literal initialises the first ten characters whilst the
eleventh position is set to 0 (the nul character). The analysis of this function
follows the ideas of [11,20,25] in representing only the position of the first nul
character, thereby ignoring the content of "the�string". Thus, a single variable
per array suffices to express the relevant information. Specifically, let n represent
the index of the nul position in s. The control flow graph of the string buffer
example is decorated with polyhedra P,Q,R, S, T, U as follows:

c==0i=0 i=i+1+

yes

noP Q

S

TR
c=s[i]

U

The initial values of the program variables is described by P = [[{i = 0, n = 10}]].
The merge of this polyhedron and the polyhedron on the back edge, U , defines
Q = P , U . To verify that the array access s[i] is within bounds, we compute
Q′ = Q + [[{0 ≤ i ≤ 31}]] and issue a warning if Q′ �= Q. The analysis continues
under the premise that the access was within bounds and hence R is defined in
terms of Q′ rather than Q as follows:

R = (∃c(Q′) + [[{i ≤ n − 1, 1 ≤ c ≤ 255}]])
, (∃c(Q′) + [[{i = n, c = 0}]])
, (∃c(Q′) + [[{n + 1 ≤ i, 0 ≤ c ≤ 255}]])

The projection operator ∃c removes all information pertaining to c in Q′ so that
c can be updated. Since the contents of s are ignored in our model, the new
value of c only depends on the relationship between the index i and n which
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describes the position of the first nul character. The value of c is restricted to
[1, 255] if i < n, it is set to 0 if i = n and to [0, 255] if i > n. Note that this
model is valid for platforms where the C char type is unsigned. The last three
equations that comprise the system are given by the following:

S = R + [[{c = 0}]]
T = (R + [[{c ≤ −1}]]) , (R + [[{c ≥ 1}]])
U = {〈n, i + 1, c〉 | 〈n, i, c〉 ∈ T}

The affine transformation in the last equation defining U assumes that the vari-
ables in the polyhedron are ordered as in the sequence n, i, c.

3.1 Applying the Widening/Narrowing Approach

As before, we solve these equations iteratively, nominating Q as the widening point
to ensure convergence in the cycle Q,R, T, U . Thus, when the equations are rein-
terpreted iteratively, the equation Q is replaced with Qj+1 = Qj∇(Pj , Uj).
Applying the standard widening/narrowing approach results in the iterates shown
in Figure 1. Again, we apply widening when Q is evaluated the third time, so
that widening is applied on Q9 and P9 , U9 to obtain Q10. The resulting poly-
hedron Q10 = [[{0 ≤ i}]] is intersected with the verification condition to yield
Q′

10 = [[{0 ≤ i ≤ 31}]], thereby raising a warning since Q10 �= Q′
10. Before pro-

ceeding to the evaluation of R11, observe that ∃c(Q′
j) = Q′

j in all iterations j since
Pj does not constrain c and consequently neither does Qj = Uj , Pj . Given that
Q′

10 allows i to take on any value in [0, 31], the three cases in the definition of R
that are guarded by i ≤ n−1, i = n and n+1 ≤ i all contribute to the result R11.
This result is depicted as the grey region in Figure 1 which shows the relationship
between i and c. The three regions whose join form the polyhedron R11 are marked
with two rectangles and a small cross for the c = 0 case. Observe that applying
narrowing, that is, replacing Qj+1 = Qj∇(Uj , Pj) with Qj+1 = Qj�(Uj , Pj),
yields another iterate 1′ in which the value of i ranges over [0, 32] which still vi-
olates the array bound check since Q′

1′ �= Q1′ where Q′
1′ = Q1′ + {0 ≤ i ≤ 31}

corresponds to Q1′ restricted to valid array indices.

3.2 The Rationale Behind Landmarks

Now consider the same fixpoint calculation using widening with landmarks as
shown in Figure 2. We omit the first nine iterates before widening is applied
since they coincide with those given in Figure 1. While landmarks are gathered
throughout the fixpoint calculation, we focus on the calculation of the polyhedron
R as this gives rise to the only landmarks that are of relevance in this example.
The three graphs in Figure 2 depict the relation between i and c in the polyhedra
R3, R7, R11, which are the three iterates in which Rj changes. The polyhedron
R3 is derived from ∃c(Q′

3) = Q′
3 = [[{0 ≤ i ≤ 0}]]. During this computation, Q′

3

is intersected with [[{i ≤ n−1, 1 ≤ c ≤ 255}]], [[{n ≤ i ≤ n, 0 ≤ c ≤ 0}]] and [[{n+
1 ≤ i, 0 ≤ c ≤ 255}]] which represent three different behaviours of the program.
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255

1

1 10

c

i

2

5 20 30

R11

j Qj Rj Sj Tj Uj

1 ⊥ ⊥ ⊥ ⊥ ⊥
2 {0 ≤ i ≤ 0} ⊥ ⊥ ⊥ ⊥

3 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥ ⊥ ⊥

4 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥

5 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
6 {0 ≤ i ≤ 1}

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
7 {0 ≤ i ≤ 1}

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
8 {0 ≤ i ≤ 1}

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
9 {0 ≤ i ≤ 1}

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}
10 {0 ≤ i}

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}
11 {0 ≤ i}

⎧⎨⎩
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

⎫⎬⎭ ⊥
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

12 {0 ≤ i}

⎧⎨⎩
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

⎫⎬⎭
⎧⎨⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬⎭
{

0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

13 {0 ≤ i}

⎧⎨⎩
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

⎫⎬⎭
⎧⎨⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬⎭
{

0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

}

14 {0 ≤ i}

⎧⎨⎩
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

⎫⎬⎭
⎧⎨⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬⎭
{

0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

}

1’ {0 ≤ i ≤ 32}

⎧⎨⎩
0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
−i− 10c ≤ −10

⎫⎬⎭
⎧⎨⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬⎭
{

0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 31,
1 ≤ c ≤ 255

}

Fig. 1. Fixpoint calculation of the string loop. A polyhedron [[S]] is abbreviated to
S and ⊥ denotes an unsatisfiable set of inequalities. The column Pj is omitted since
Pj = [[{0 ≤ i ≤ 0}]] for all iterations j. Further we omit 10 ≤ n ≤ 10 from all polyhedra.
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255
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i i i
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5 5 5

R3 R7 R11

j Qj Rj Sj Tj Uj

10 {0 ≤ i ≤ 10}
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

11 {0 ≤ i ≤ 10}

⎧⎪⎪⎨⎪⎪⎩
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

⎫⎪⎪⎬⎪⎪⎭ ⊥
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

12 {0 ≤ i ≤ 10}

⎧⎪⎪⎨⎪⎪⎩
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬⎪⎪⎭
{

0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

13 {0 ≤ i ≤ 10}

⎧⎪⎪⎨⎪⎪⎩
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬⎪⎪⎭
{

0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

}

14 {0 ≤ i ≤ 10}

⎧⎪⎪⎨⎪⎪⎩
0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i− 10c ≤ −10

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬⎪⎪⎭
{

0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

}

Fig. 2. Fixpoint calculation using widening with landmarks

As the fixpoint calculation progresses, polyhedra grow and new behaviours are
incrementally enabled. A behaviour can only change from being disabled to
being enabled when one of its constituent inequalities makes the transition from
unsatisfiable to satisfiable. A fixpoint may exist in which not all behaviours of
a program are enabled, that is, there are behaviours that contain unsatisfiable
inequalities. The rationale for widening with landmarks is to find these fixpoints
by systematically considering the inequalities that prevent a behaviour from
being enabled. These inequalities are exactly those inequalities in the semantic
equations that are unsatisfiable in the context of the current iterate. In the
example, the last two behaviours contain the inequalities n ≤ i (arising from
i = n) and n + 1 ≤ i that are responsible for enabling the second and third
behaviour. These inequalities are unsatisfiable in Q′

3 and are therefore stored
as landmarks. The leftmost graph in Figure 2 indicates the position of the two
inequalities n ≤ i and n + 1 ≤ i which define the landmarks we record for R3.
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3.3 Creating Landmarks for Widening

A landmark is a triple comprised of an inequality and two distances. On creation,
the first distance is set to the shortest straight-line distance the inequality must
be translated so as to touch the current iterate. In this example, translations by
10 and 11 units are required for n ≤ i and n + 1 ≤ i, respectively, to touch R3.

In the 7th iteration, when Rj is updated again, a second measurement is
taken between the inequality and the new iterate. This distance is recorded as
the second distance in the existing landmark. In the example, the second distance
for the landmarks for n ≤ i and n + 1 ≤ i is set to 9 and 10 units, respectively.

By iteration 8 both landmarks have acquired a second measurement, however,
it is not until widening is applied in iteration 10 that the landmarks are actually
used. The difference between the two measurements of a particular landmark
indicates how fast the iterates Rj are approaching the as-of-yet unsatisfiable
inequality of that landmark. From this difference we estimate how many times
Rj must be updated until the inequality becomes satisfiable. In the example,
the difference in distance between the two updates R3 and R7 is one unit for
each landmark. Thus, at this rate, Rj would be updated 9 more times until the
closer inequality, namely n ≤ i, becomes satisfied. Rather than calculating all
these intermediate iterates, we use this information to perform an extrapolation
step when the widening point Q is revisited.

3.4 Using Landmarks in Widening

From the perspective of the widening operator, the task is, firstly, to gather
all landmarks that have been generated in the traversal of the cycle in which
the widening operator resides. Secondly, the widening operator ranks the land-
marks by the number of iterations needed for the corresponding inequality to
become satisfied. Thirdly, the landmark with the smallest rank determines the
amount of extrapolation the widening operator applies. In the example, recall
that the unsatisfiable inequality n ≤ i in R7 would become satisfiable after 9
more updates of R whereas the other unsatisfiable inequality n + 1 ≤ i becomes
satisfiable after 10 updates. Hence, n ≤ i constitutes the nearest inequality and,
rather than applying widening when calculating Q10 = Q9∇(P9 , U9), extrap-
olation is performed. Specifically, the changes between Q9 = [[{0 ≤ i ≤ 1}]] and
P9 ,U9 = [[{0 ≤ i ≤ 2}]] are extrapolated 9 times to yield Q10 = [[{0 ≤ i ≤ 10}]].
The new value of Q10 forces a re-evaluation of R, yielding R11, as shown in Fig-
ure 2. In the next iteration, the semantic equation for T yields [[{0 ≤ i, 1 ≤ c ≤
255, 255i + c ≤ 2550}]]. Since i and c are known to be integral, this polyhedron
can be refined [16] to the entry T12 as shown in the table. A final iteration leads
to a fixpoint.

Note that it is possible to apply extrapolation as soon as a single landmark
acquires its second measurement. However, to ensure that the state is extrap-
olated only to the point where the first additional behaviour becomes enabled,
the extrapolation step should be deferred until all landmarks have acquired their
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Listing 1. Adding or tightening a landmark: updateLandmark(P, ι, L)
Require: P ∈ Poly , ι ∈ Ineq ,L ⊆ Lin × Z× (Z ∪ {∞})
1: e ≤ c← ι
2: c′ ← min(P, e)
3: if c < c′ then /* P ! [[{ι}]] is empty */
4: dist ← c′ − c /* calculate the distance between P and [[{ι}]] */
5: if ∃distc, distp . 〈e, distc, distp〉 ∈ L then
6: return (L \ {〈e, distc, distp〉}) ∪ {〈e, min(dist , distc), distp〉}
7: else
8: return L ∪ {〈e, dist ,∞〉}
9: end if

10: end if
11: return L

second value. In practise, this means that no extrapolation is performed if a new
landmark was created in the last iteration. Note that new landmarks cannot
be added indefinitely as there is at most one landmark for each inequality that
occurs in the semantic equations which are, in turn, finite.

The following sections formalise these ideas by presenting algorithms for gath-
ering landmarks and performing extrapolation using landmarks.

4 Acquiring Landmarks

This section formalises the intuition behind widening with landmarks by giving a
more algorithmic description on how landmarks are acquired. Listing 1 presents
the algorithm updateLandmark which is invoked whenever a polyhedron P is in-
tersected with an inequality ι that arises from a semantic equation. In line 2, the
distance between ι and P is measured by calculating c′ = min(P, e). Intuitively,
e ≤ c′ is a parallel translation of ι that has a minimal intersection with P . Line
3 compares the relative location of ι and its translation, thereby ensuring that
lines 4 to 9 are only executed if ι is unsatisfiable and, thus, can yield a landmark.
If ι is indeed unsatisfiable, line 4 calculates its distance to P .

Given this distance, line 5 determines if a landmark is to be updated or
created. An update occurs whenever different semantic equations contain the
same unsatisfiable inequality. In this case line 6 ensures that the smaller distance
is stored in the landmark. The rationale for storing the distance to the closer
inequality is that a landmark for the inequality that is further away can be
gathered later. In particular, if extrapolation to the nearer inequality does not
lead to a fixpoint, the nearer inequality is satisfiable in the extrapolated space
and cannot induce a new landmark. At this point the inequality that is further
away can become a landmark. Hence, tracking distances to closer inequalities
ensures that all landmarks are considered in turn.

When creating a new landmark, line 8 sets the second distance to infinity
which indicates that this new landmark is not yet ready to be used in extrapo-
lation. The next section details how the acquired landmarks are manipulated.
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advance landmarks
extrapolate/widen
clear all landmarks

calc no. of iterations

+

stable?

steps>0
yesno

no

yes

Fig. 3. Operations performed at a widening point

Listing 2. Advance a landmark: advanceLandmarks(L)
Require: L ⊆ Lin × Z× (Z ∪ {∞})
1: L′ ← {〈e, distc, distc〉 | 〈e, distc, distp〉 ∈ L}
2: return L′

5 Using Landmarks at a Widening Point

The semantic equations of the program induce cyclic dependencies between the
states at each program point. A widening point must be inserted into each cycle to
ensure that the fixpoint computation eventually stabilises. In case of nested cycles,
a fixpoint is calculated on each inner cycle before moving on to the containing cycle
[6]. Figure 3 schematically shows the actions taken when a semantic equation at a
widening point is evaluated. If stability has not yet been achieved, all landmarks
gathered in the current cycle (excluding those in inner cycles) are passed to the al-
gorithm calcIterations which estimates the number of times the cycle needs to be
traversed until a state is reached at which the first as-of-yet unsatisfiable inequal-
ity becomes satisfiable. This count is denoted as steps in Figure 3. Two special
values are distinguished: 0 and ∞. A value of zero indicates that new landmarks
were created during the last traversal of the cycle. In this case, the left branch
of Figure 3 is taken and the algorithm advanceLandmarks , which is presented in
Listing 2, is called. Normal fixpoint computation is then resumed, allowing land-
marks to acquire a second measurement. The call to advanceLandmarks stores the
calculated distance in the third element of each landmark, thereby ensuring that
this value is not lost when updateLandmark updates the second element of the
landmark tuple during the next iteration.

The right branch of Figure 3 is selected whenever calcIterations returns a
non-zero value for steps which indicates that all landmarks have acquired two
measurements. This is the propitious moment for extrapolation as only now
can all landmarks participate in predicting the number of cycles until the first
as-of-yet unsatisfiable inequality is reached. In order to show how this num-
ber is derived, consider Listing 3. The algorithm calcIterations calculates an
estimate of the number of iterations necessary to satisfy the nearest landmark
stored in steps. This variable is initially set to ∞ which is the value returned
if no landmarks have been gathered. An infinite value in steps indicates that
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Listing 3. Calculate distance calcIterations(L)
Require: L ⊆ Lin × Z× (Z ∪ {∞})
1: steps ←∞ /* indicate that normal widening should be applied */
2: for 〈e, distc, distp〉 ∈ L do
3: if distp =∞ then
4: steps ← 0
5: else if distp > distc then
6: steps ← min(steps, �distc/(distp − distc)�) /* assume min(∞, n) = n */
7: end if
8: end for
9: return steps

widening, rather than extrapolation, has to be applied. Otherwise, the loop in
lines 2–8 examines each landmark in turn. For any landmark with two measure-
ments, i.e. those for which distp �= ∞, line 6 calculates after how many steps the
unsatisfiable inequality that gave rise to the landmark 〈e, distc, distp〉 becomes
satisfiable. Specifically, distp−distc represents the distance traversed during one
iteration. Given that distc is the distance between the boundary of the unsatis-
fiable inequality and the polyhedron in that iteration, the algorithm computes
-distc/(distp − distc). as an estimate of the number of iterations required to
make the inequality satisfiable. This number is stored in steps unless another
landmark has already been encountered that can be reached in fewer iterations.

The next section presents an algorithm that extrapolates the change between
two iterates by a given number of steps. It thereby completes the suite of algo-
rithms necessary to realise widening with landmarks.

6 Extrapolation Operator for Polyhedra

In contrast to standard widening which removes inequalities that are unstable, ex-
trapolation by a finite number of steps merely relaxes inequalities until the next
landmark is reached. Listing 4 presents a simple extrapolation algorithm that per-
forms this relaxation based on two iterates, namely P1 and P2. This extrapola-
tion is applied by replacing any semantic equation of the form Qi+1 = Qi∇Ri

with Qi+1 = extrapolate(Qi, Ri, steps) where steps = calcIterations(L) and L
is the set of landmarks relevant to this widening point. Thus the first argument
to extrapolate, namely P1, corresponds to the previous iterate Qi, while P2 corre-
sponds to Ri. Line 2 calculates the join P of both, P1 and P2, which forms the basis
for extrapolating the polyhedron P1. Specifically, bounds of P1 that are not pre-
served in the join are extrapolated. The loop in lines 7–15 implements this strategy
which resembles the original widening on polyhedra [10] which can be defined as
Eres = {ιi | P $ [[{ιi}]]} where ι1, . . . ιn is a non-redundant set of inequalities
such that [[{ι1, . . . ιn}]] = P1, c.f. [1]. Note that this widening can be inaccurate if
the dimensionality of P1 is smaller than that of P = P1 , P2; other inequalities
from P can be added to Eres to remedy this [1,14] but we omit this additional
step for brevity. The entailment check P $ [[{ιi}]] for ιi ≡ e ≤ c is implemented
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Listing 4. Extrapolate changes extrapolate(P1, P2, steps)
Require: P1, P2 ∈ Poly , steps ∈ N ∪ {∞}
1: [[ι1, . . . ιn]]← P1 /* ι1, . . . ιn is a non-redundant description of P1 */
2: P ← P1 $ P2

3: if steps = 0 then
4: return P
5: else
6: Eres ← ∅
7: for i = 1, . . .n do
8: e ≤ c← ιi
9: c′ ← min(P, e)

10: if c′ ≤ c then
11: Eres ← Eres ∪ {e ≤ c} /* since P % [[ιi]] */
12: else if steps �=∞ then
13: Eres ← Eres ∪ {e ≤ (c + (c′ − c)steps)}
14: end if
15: end for
16: return [[Eres ]]
17: end if

5

1
2

4

8

1 2 3 4

y

i6 7 8

y 8

Fig. 4. Illustrating non-linear growth

in line 9 by calculating the smallest c′ such that P $ [[{e ≤ c′}]]. In the case that
c′ ≤ c, the entailment holds and line 11 adds the inequality to the result set. In
the case that the entailment does not hold, the inequality is discarded whenever
steps = ∞. In this case extrapolate reduces to a simple widening. If steps is finite,
line 13 translates the inequality, thereby anticipating the change that is likely to
occur during the next steps loop iterations.

The presented algorithm performs a linear translation of inequalities. Since
array accesses are typically linear, this approach is well suited for verifying that
indices fall within bounds. However, a non-linear relationship such as that aris-
ing in the C loop int i=1; for(int y=1; y<8; y=y*2) i++; is not amenable
to linear extrapolation and thus leads to a loss of precision. The loop creates
successive values for i, y that correspond to the points 〈1, 1〉, 〈2, 2〉, 〈3, 4〉 and,
finally, at the exit of the loop, the point 〈4, 8〉. These are indicated as crosses in
Figure 4. The best polyhedral approximation of these points restricted by the
loop invariant y < 8 is shown in dark grey. However, extrapolating the first two
iterates, namely the polyhedron {〈1, 1〉} and the polyhedron that additionally
contains 〈2, 2〉, predicts that the shown landmark y ≥ 8 becomes satisfiable after
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7 additional loop iterations. The extrapolation results in the state depicted as
a dashed line; continuing the fixpoint calculation leads to the light grey area as
loop invariant which is a coarser approximation than the optimal polyhedron.

7 Implementation

We have implemented widening with landmarks in a verifier for C programs that
combines numeric analysis with points-to analysis. The verifier is geared towards
string buffer analysis in that it implements the tracking of nul positions [20]. One
obstacle in a polyhedral analysis is the complexity of the polyhedral operations.
To support a large number of variables, we chose the two-variable-per-inequality
(TVPI) domain [22] which can only represent inequalities with at most two non-
zero variables per inequality. The underlying idea in this domain is to calculate
a closure of the TVPI inequalities. A closure step eliminates a from any two
(appropriately scaled) inequalities axi + bxj ≤ c and −axi + dxk ≤ e to obtain
bxj + dxk ≤ c + e which is then added to the closure. A closed system makes
it possible to implement all polyhedral operations efficiently on sets of planar
polyhedra. For example, the convex hull operation on planar polyhedra runs in
O(n log n) where n is the number of inequalities in the planar polyhedron [22].
Another advantage is the availability of algorithms to shrink each planar poly-
hedron around the integral grid [16]. This is not only useful to improve precision
when analysing integer variables (as necessary in T12 of Figure 2) but also limits
the size of coefficients of inequalities. Otherwise, inequalities with excessively
large coefficients have to be removed to ensure progress [21], a step that is im-
possible in the TVPI domain since closure could re-introduce these inequalities.

Implementing widening with landmarks requires two modifications to an ex-
isting analysis, namely modifying the intersection operation to gather landmarks
and replacing widening operators by extrapolation operations that evaluate the
acquired landmarks. When it comes to gathering landmarks, note that the TVPI
domain implements intersection of a polyhedron P and a set of inequalities
{ι1, . . . ιn} by computing (. . . ((P + {ι1}) + {ι2}) . . .) + {ιn} since a cheap incre-
mental closure can be applied after adding a single inequality. Adding inequal-
ities one-by-one makes it possible to intersperse calls to updateLandmark for
landmark acquisition. While it may seem that calculating min(e, P ) in line 2
of Listing 1 incurs a performance penalty, it turns out that running this linear
program can actually improve memory performance of a domain. Consider the
semantic equation of R from Section 3 whose calculation requires three copies of
the input polyhedron ∃c(Q′) which are then intersected with inequalities express-
ing three different behaviours. During the fixpoint calculation, many behaviours
are disabled. A consequence of this is that a polyhedron will be copied, only for
the copy to become unsatisfiable when intersected with an inequality that ex-
presses such a disabled behaviour. Observe that in this case the test on line 3 of
updateLandmark succeeds and a landmark is added. A better strategy is to call
updateLandmark without copying the original input polyhedron and, only if no
new landmarks arise, an actual copy of the input polyhedron is needed further
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Fig. 5. Improved widening from polytopes to polyhedra

processing. This strategy avoids copying polyhedra that are shortly after aban-
doned when they turn unsatisfiable. Note that this refinement can be applied to
many semantic equations, in particular, to those that model conditionals which,
in our application, make up the majority of all intersection operations.

8 Related Work

Although the foundations of widening and narrowing were laid three decades
ago [7], the value of widening was largely unappreciated until comparatively re-
cently [9]. In the last decade there has been a resurgence of interest in applying
polyhedral analysis and, specifically, polyhedral widenings [1,3,4]. The original
widening operator in [10] discards linear relationships that result from joining the
state of the previous loop iteration with the current loop iteration. This causes
a loss of precision, especially when widening is applied in each loop iteration.
The so-called revised widening [14] remedies this by adding additional inequal-
ities from the join. Benoy [3] showed that the two widenings coincide whenever
widening is postponed until the dimensionality of the iterates has stabilised.

Besson et al. [4] present widenings that are especially precise when widening
polytopes into polyhedra. For instance, the iterates shown in Figure 5 feature an
inequality with changing coefficients that standard widening would remove. In-
stead, this inequality is widened to y ≥ 0, thereby retaining a lower bound on y.
Extending our extrapolation function to include inequalities with changing coef-
ficients is an interesting research question. Bagnara et al. [1] combine the tech-
niques of Besson et al. and other widenings with extrapolation strategies that de-
lay widening. More closely related is work on extrapolation using information from
the analysed equation system. For instance, widening with thresholds [5] uses a
sequence of user-specified values (thresholds) on individual variables up to which
the state space is extrapolated in sequence. Halbwachs et al. [15] deduce thresh-
olds automatically from guards in the semantic equations. However, they observe
redundant inequalities rather than unsatisfiable inequalities, thereby possibly ex-
trapolating to thresholds where no fixpoint can exist, such as redundant inequali-
ties that express verification conditions. The restriction of inferring thresholds on
single variables is lifted by lookahead widening which uses standard widening and
narrowing operators and thereby is able to find bounds that are expressed with
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more than one variable [12]. It uses a pilot polyhedron on which widening and
narrowing is performed alongside a main polyhedron. Once the pilot value has
stabilised after narrowing, it is promoted to become the main value. By using
the main value to evaluate effects in other domains, the problems of domain
interaction as discussed in Section 1 do not occur. Furthermore, by discarding
behaviours that are enabled after widening but are disabled with respect to the
main value, their approach is able to find fixpoints in which not all behaviours are
enabled, such as the one in the example on string buffers. While their approach
solves essentially the same problem as widening with landmarks, the analysis
operates on two polyhedra instead of one.

Further afield is the technique of counterexample-driven refinement that has
recently been adapted to polyhedral analysis [13]. This approach is in some
sense orthogonal to narrowing that refines a single fixpoint. In counterexample-
driven refinement, the fixpoint computation is repeatedly restarted, guided by
a backwards analysis from the point of a false warning to some widening point.
Finally, it has been shown that widening and narrowing can be avoided altogether
in a relational analysis if the semantic equations are affine [24]. Incredibly, for
this restricted class of equations, least fixpoints can be found in polynomial time.

9 Conclusion

Motivated by shortcomings encountered in narrowing polyhedra, this paper pro-
poses an extrapolation technique called widening with landmarks. The idea is to
reason about unsatisfiable inequalities to guide the extrapolation process. This
tactic is sensitive to invariants that are not obvious from the loop condition.
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entifique et médicale de Grenoble, Grenoble, France, March 1979.

15. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of Real-Time Systems
using Linear Relation Analysis. Formal Methods in System Design, 11(2):157–185,
August 1997.

16. W. Harvey. Computing Two-Dimensional Integer Hulls. SIAM Journal on Com-
puting, 28(6):2285–2299, 1999.

17. N. Heintze and O. Tardieu. Ultra-fast Aliasing Analysis using CLA: A Million
Lines of C Code in a Second. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 254–263, 2001.
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Comparing Completeness Properties of Static

Analyses and Their Logics

David A. Schmidt�
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Abstract. Static analyses calculate abstract states, and their logics val-
idate properties of the abstract states. We place into perspective the va-
riety of forwards, backwards, functional, and logical completeness used in
abstract-interpretation-based static analysis by giving examples and by
proving equivalences, implications, and independences. We expose two
fundamental Galois connections that underlie the logics for static analy-
ses and reveal a new completeness variant, O-completeness. We also show
that the key concept underlying logical completeness is covering, which
we use to relate the various forms of completeness.

When we use a static analysis, like data-flow analysis or model checking, to val-
idate a program for correctness or code improvement, we must carefully define
the domain of properties the analysis can calculate so that it includes both the
goal properties we seek to validate as well as intermediate properties that lead
to the goals. Say we try to validate {?}y := −y; x := y + 1{isPositive(x)}; our
analysis requires properties like isNegative to calculate a sound precondition:
{isNegative(y)} y := −y {isPositive(y)} x := y + 1 {isPositive(x)}. But, is the
analysis complete — as expressive as possible? If we can express the proper-
ties, isNonNegative and isNonPositive , then a complete analysis calculates the
weakest precondition: {isNonPositive(y)} y := −y; x := y + 1 {isPositive(x)}.

The example suggests that “completeness” is a property of both static anal-
yses as well as logics. Thanks to Cousot and Cousot [6,7,8,11], we have a well-
defined notion of functional completeness: it is when a static analysis’s abstract
state-transition function precisely mimicks the concrete state-transition function,
modulo the Galois connection between concrete and abstract domains.

Giacobazzi, Ranzato, and Scozarri [17] showed how to refine an abstract in-
terpretation to synthesize functionally complete transition functions; Giacobazzi
and Quintarelli [16] showed that there are, in fact, two, independent notions of
functional completeness — forwards and backwards. Cousot and Cousot [11] ap-
plied functional completeness to define the logical completeness of a logic that
judges abstract values as compared to the logic that judges the concrete values.
Recently, Ranzato and Tapparo [23,24] applied Giacobazzi, et al.’s refinement
techniques to build logically complete abstract logics.

The present paper’s contribution is to place into perspective the variants of
forwards, backwards, functional, and logical completeness by giving examples
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γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ(pos) = {1, 2, 3, · · ·}
γ(zero) = {0}, etc.

α{−4,−1} = neg
α{2, 4, 6, 8, ...} = pos

α{−4,−1, 0} = any
α{0} = zero
α{} = none , etc.

Fig. 1. Galois connection for signs; equivalence classes circled

and by proving equivalences, implications, and independences. By exposing two
fundamental Galois connections that underlie logics for abstract values, we reveal
yet another completeness variant, O-logical-completeness. We also show that the
key concept underlying logical completeness notions is covering, which we use
to relate the various forms of completeness.

1 Galois Connections and Functional Completeness

We use Galois connections to abstract concrete data into properties. A Galois
connection [8,15] between two partially ordered sets, (C,⊆) and (A,$), written
C〈α, γ〉A, is a pair of functions, α : C → A and γ : A → C, such that for all
c ∈ C and a ∈ A,

c ⊆ γ(a) iff α(c) $ a.

The adjunction is equivalently defined by requiring that α and γ are monotone
maps such that idC→C $ γ ◦ α and α ◦ γ $ idA→A.

C is the concrete domain and A is the abstract domain. γ’s adjoint, α, is
uniquely defined as α(c) = +{a | c ⊆ γ(a)} and α’s adjoint must be γ(a) =
∪{c | α(c) $ a}[15]. γ is an upper adjoint of a Galois connection iff it preserves
meets: γ(+T ) = ∩a∈Tγ(a), for all T ⊆ A. Similarly, α is a lower adjoint iff it
preserves joins: α(∪S) = ,c∈Sα(c), for all S ⊆ C [15].

Figure 1 displays the classic Galois connection that abstracts sets of integers
to their signs [8]. (In the Figure, C is P(Int) and A is Sign.)Each S ∈ P(Int) is
abstracted to α(S) ∈ Sign. Values like pos and any can be read as primitive logical
propositions (isPositive and true, respectively) or they can be used as abstract
arguments and answers to static-analysis functions (e.g. succ	(zero) = pos). The
Galois connection is overapproximating because S ⊆ γ(α(S)), for all S ∈ P(C).

The following little-known result [21] exposes the inner structure of Galois
connections:1 There is a Galois connection between (C,⊆) and (A,$) iff
1 In this paper, definitions and previously proved results are embedded into the text

narrative. New results and new variations of known results are stated as Propositions,
Theorems, and Corollaries. Due to lack of space, some proofs are omitted but can be
found in the paper’s accompanying technical report [28].
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1. C is partitioned into equivalence classes, each class, p, having a unique maxi-
mal element, max(p); A is partitioned into equivalence classes, each class, q,
having a unique minimal element, min(q); the subposet of maximal elements
in C is order-isomorphic to the subposet of minimal elements in A.

2. For all c, c′ ∈ C, if c ⊆ c′, then max ([c]α) ⊆ max ([c′]α), where [c]α is c’s
equivalence class.

3. For all a, a′ ∈ A, if a $ a′, then min([a]γ) $ min([a′]γ), where [a]γ is a’s
equivalence class.

Figure 1 illustrates the internal structure: α and γ partition their domains into
equivalence classes, where the images of the two functions are order-isomorphic.
Each concrete equivalence class “droops” from its canonical (maximal) element,
and each abstract class “floats” from its canonical (minimal) element. In Figure
1, α is onto (hence, γ is one-one), making Sign’s equivalence classes singletons.
The concrete domain’s canonical elements are ∅, {· · · ,−2− 1}, {0} {1, 2, 3, · · ·},
and Int . (This is γ’s image; α’s image is Sign.) When α is onto, the Galois
connection is characterized by γ ◦ α, a closure map [8,17].

1.1 The Internal Logic Defined by a Galois Connection

For Galois connection, C〈α, γ〉A, say that c ∈ C has property a ∈ A, written
c |= a, iff c ⊆ γ(a) (equivalently, iff α(c) $ a). Read the elements of A as
assertions in a logic with conjunction, because c |= a1 +A a2 iff c |= a1 and
c |= a2. This is because γ preserves +A as ∩C .

Other connectives might be present (e.g., disjunction), but this is not the
case for Sign in Figure 1, e.g., {0} |= neg,pos , but {0} �|= neg and {0} �|= pos ,
because γ fails to preserve ,. We will see that such “γ-preservations” lead to
one notion of completeness and that there is a dual notion of “α preservation.”

1.2 Sound Abstract Transformers

For Galois connection, C〈α, γ〉A, a state-transition function, f : C → C, can be
approximated: We say that a monotonic f 	 : A → A is sound for f : C → C iff
α◦f $C→A f 	 ◦α, or equivalently, iff f ◦γ $A→C γ ◦f 	. That is, when α(c) = a,
f 	(a) computes an answer that is weaker (with respect to $A) than the name
of f(c)’s α-equivalence class: f

( c ) f # α( c )( )

( )f(c)α
f #

f(c)c
α

α

α

This makes f 	 an overapproximation of f : f(c) ⊆ γ(f 	(α(c))). The map, f 	
best =

α ◦ f ◦ γ, is the “best” abstraction of f in the sense that f 	
best is sound for f and

f 	
best $A→A f 	 for all sound f 	 [8] — it is the best one can do with f , α, and γ.
For Sign in Figure 1, the transformer, succ∗ : P(Int) → P(Int) is soundly ab-

stracted by succ	
0(a) = any , whereas the best abstract transformer is succ	

best =
α ◦ succ∗ ◦ γ, where succ	

best(zero) = succ	
best(pos) = pos . (For f : C → C, define

f∗ : P(C) → P(C) as f∗(S) = {f(c) | c ∈ S}. Thus, for succ(n) = n + 1, we
have succ∗(S) = {n + 1 | n ∈ S}.)
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1.3 Complete Abstract Transformers

When the inclusions that define soundness are strengthened into equalities, this
defines functional completeness: for f : C → C and f 	 : A → A,

– f 	 is backwards (B(α)-) complete for f iff α ◦ f = f 	 ◦α [8,17]. That is, α is
a homomorphism that preserves f as f 	.

– f 	 is forwards (F(γ)-) complete for f iff f ◦ γ = γ ◦ f 	 [16]. That is, γ is a
homomorphism that preserves f 	 as f .

We say that f 	 is B- (respectively, F-) complete when the α (resp. γ) is clear
from the context. The two completeness notions are not equivalent [16], and the
distinctions are subtle: For c, c′ ∈ C, write c ∼α c′ iff α(c) = α(c′).

– There exists a B-complete f 	 for f iff for all c, c′ ∈ C, c ∼α c′ implies
f(c) ∼α f(c′). In this case, we say that f itself is B-complete.

For B-complete f 	, f 	(a) computes the α-equivalence class of f(c), for every
c ∈ γ(a), but the specific value within the equivalence class is lost. If f 	 is
B-complete for f , then so is f 	

best = α ◦ f ◦ γ. So, f itself is B-complete iff
α ◦ f = f 	

best ◦ α. If α is onto and there is a B-complete f 	 for f , then it is f 	
best

[17].

– There exists an F-complete f 	 for f iff for all c ∈ γ[A], f(c) ∈ γ[A].2 In this
case, we say that f itself is F-complete [16].

For F-complete f 	, f 	(a) computes the concrete value of f applied to the canon-
ical element, γ(a) ∈ C — it computes γ(f 	(a)) — but the values and even
the equivalence-class names of the noncanonical elements in C are lost. If f 	 is
F-complete for f , so is f 	

best; f itself is F-complete iff f ◦ γ = γ ◦ f 	
best. If γ is 1-1

and there is an F-complete f 	 for f , then it is f 	
best [16].

The existence of a B- and an F-complete f 	 for f depend solely on the Galois
connection and f itself. Figure 2 graphs the behaviors of a B-complete and an
F-complete f : C → C on the equivalence classes of C induced by a Galois
connection.

Based on Figures 1 and 2, we can readily verify some Sign-completeness
properties: square∗ is B-complete but not F-complete; negate∗ is both B- and
F-complete; succ∗ is neither;3 and enum∗ is F-complete but not B-complete,
where enum(n) = if (nmod2 = 0) then (n div2) else (n div (−2)).

When α is not onto (that is, γ is not 1-1), there can be multiple abstract
transformers f 	 that are F-complete for f :

Proposition 1. f ◦ γ = γ ◦ f 	 iff, for all a ∈ A, (i) f(γ(a)) ∈ γ[A], and (ii)
f 	

best(a) ∼γ f 	(a).

Proposition 2. α ◦ f = f 	 ◦ α iff, (i) for all c, c′ ∈ C, c ∼α c′ implies f(c) ∼α

f(c′), and (ii) for all a ∈ α[C], f 	
best(a) = f 	(a).

2 Please recall, for function f : C → C and set S ⊆ C, that f [S] denotes {f(s) | s ∈ S}.
3 Where square(n) = n ∗ n and negate(n) = −n and succ(n) = n+ 1.
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B-complete:
f

F-complete: f

Fig. 2. Behavior of a B-complete and an F-complete f : C → C
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Fig. 3. Incompleteness (a) and its forwards (b) and backwards (c) refinements

Say that f : C → C is not itself F-complete (see Figure 3(a)); to make it so,
we must ensure that f maps C-canonical arguments to C-canonical answers. To
do this, for each c ∈ γ[A] (that is, c = γ(a0)), where f(c) �∈ γ[A], we make a
new equivalence class, ↓f(c)∩ [f(c)]α, in C whose maximal, canonical element is
f(c) = γ(a′p), where a′p is a new A-element.4 If we close the canonical elements
under ∩ (making even more new equivalence classes) and repeat until conver-
gence, then f becomes F-complete. This is the F-complete-shell construction
[16,23] — it adds elements by computing “forwards” from f . See Figure 3(b).

For example, since square∗ is not F-complete for Sign, we systematically
add to Sign new values that represent the canonical elements, {1, 4, 9, · · ·},
{1, 16, 81, · · ·}, {1, 256, 6561, · · ·}, . . .; this time, the procedure does not finitely
converge.

Dually, if f : C → C is not B-complete, we must make f map α-related
arguments to α-related answers. We can either split equivalence classes in f ’s
domain (the B-complete shell construction [17]) or merge equivalence classes in
f ’s range (the B-complete-core construction [17]).

Consider the former, and say there is some c0 ∈ C such that f(c0) �∼α

f(max[c0]α). We compute the set, [c0]α ∩ f−1([f(c0)]α), and we select the max-
imal elements, c′, from this set as the canonical elements of new equivalence
classes, ↓ c′ ∩ [c′]α. If we close under ∩ and repeat until convergence, then f
becomes B-complete.5 The B-complete shell construction adds elements by com-
puting “backwards” from f . See Figure 3(c).

For example, succ∗ is not B-complete for Sign, because succ∗{−1,−2, ...} �∼α

succ∗{−2}: the former maps into Int ’s equivalence class, and the latter maps into
the class of negative ints. [{−2}]α∩f−1[succ∗{−2}]α collects all nonempty sets of
negative numbers less than -1; the maximal set in this collection is {−2,−3, · · ·},
and this set becomes the canonical element of a new equivalence class. We repeat

4 Recall, for c ∈ C, that ↓c = {c′ ∈ C | c′ ⊆ c}.
5 f must be chain continuous for the technique to converge correctly [16].
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the refinements and add these new canonical elements: {−i,−(i + 1), ...} and
{−i}, for all i > 1.

The shell constructions show that the match between f : C → C and Galois
connection α〈C,A〉γ must be “perfect” to achieve completeness.

The fixed point operators are well behaved with respect to completeness: Say
that when f 	 is B- (resp., F-)complete for f , then G	(f 	) is B- (F-)complete for
G(f). We have

– α ◦ lfpG = lfpG	 ◦ α, when α is continuous
– α ◦ gfpG = gfpG	 ◦ α, when α is co-continuous and α(%) = %
– lfpG ◦ γ = γ ◦ lfpG	, when γ is continuous and γ(⊥) = ⊥
– gfpG ◦ γ = γ ◦ lfpG	, when γ is co-continuous.

See Cousot and Cousot [8] and Ranzato and Tapparo [25] for elaboration.

2 Program Logics

A logic for C consists of a set of assertions, L, and a judgement relation, |= ⊆
C ×L; we write c |= φ when (c, φ) is in the relation. For example, a |= based on
Figure 1 might give us {2, 4, 6} |= even and {4} |= any .

Section 1.1 noted that a Galois connection defines an “internal logic,” where
L = A and for all c ∈ C, c |= a iff c ⊆ γ(a) (iff α(c) $ a). But most program
logics are extensions of A, and given a Galois connection, P(D)〈α, γ〉A — the
concrete domain is a powerset — we obtain this inductively defined logic:

1. an inductively defined set of assertions,

L 1 φ ::= a | opi(φj)0<j≤ar(i), for i ∈ I

where opi has arity ar(i) ≥ 0, for every i ∈ I.
2. an inductively defined interpretation, [[ · ]] : L → P(D):

[[a]] = γ(a)
[[opi(φj)0<j≤ar(i) ]] = gi([[φj ]])0<j≤ar(i), where gi : P(D)ar(i) → P(D).

For S ∈ P(D), define S |= φ iff S ⊆ [[φ]]. See the example in Figure 4. Using
Figures 4 and 1 and one-variable assignment programs, we can validate, for
example, the precondition assertion, {−2,−4, 0} |= [x := −x; x := x + 1]pos .

The logic defines program correctness and transformation properties, and
when we wish to validate a precondition assertion like S0 |= [f ]φ (or a post-
condition assertion like f∗(S0) |= φ) via a static analysis, we use f 	 : A → A
to approximate f∗ : P(D) → P(D) and we use a0 ∈ A to approximate S0. We
then attempt to validate a0 |= [f 	]φ (resp., f 	(a0) |=A φ):
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Given Galois connection, P(D)〈α, γ〉A, define L as follows:

a ∈ Prim = A (the primitive assertions)
L & φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f ]φ

[[ · ]] : L → P(D)

[[a]] = γ(a)
[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2 ]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2 ]]

[[[f ]φ]] = p̃ref [[φ]]
where p̃ref (S) = {c ∈ D | f(c) ⊆ S}
and f : D → P(D) is a state-transition function

Fig. 4. An inductively defined precondition logic

– For P(D)〈α, γ〉A, a judgement relation, |=A ⊆ A × L, is γ-sound for |= ⊆
P(D) × L iff for all a ∈ A and φ ∈ L, a |=A φ implies γ(a) |= φ.

For example, a γ-sound |=A might validate that neg |=A [x := −x; x := x + 1]pos .
Define [[φ]]A = {a | a |=A φ}. Since γ is monotonic, it is natural to demand

that |=A be downclosed: a0 $A a1 and a1 |=A φ imply a0 |=A φ. Downclosure is
central to soundness — here is a second definition of soundness that shows why:

– For P(D)〈α, γ〉A, |=A ⊆ A × L is α-sound for |= ⊆ P(D) × L iff for all
S ∈ P(D) and φ ∈ L, α(S) |=A φ implies S |= φ.

Proposition 3. If |=A is downclosed, then |=A is γ-sound for |= iff |=A is
α-sound for |=.

Hereafter, we speak only of “soundness” and omit γ (resp., α).
Let (P↓(A),⊆) define the complete lattice of downclosed subsets of A, ordered

by subset inclusion, and for γ : A → P(D), define γ : P↓(A) → P(D) as
γ(T ) = γ∗(T ), that is, ∪a∈T γ(a).6 Here is yet another equivalent definition of
soundness, stated in terms of γ, [[ · ]] : L → P(D), and [[ · ]]A : L → P↓(A):

– [[ · ]]A is sound for [[ · ]] iff γ[[φ]]A ⊆ [[φ]], for all φ ∈ L.

This definition suggests an adjunction using γ; there are two possible ones:

Proposition 4. For P(D), P↓(A), and γ : A → P(D),

1. P(D)〈αo, γ〉P↓(A) is a Galois connection, where αo(S)=
⋂
{T | S ⊆ γ(T )}=

↓{α{c} | c ∈ S} , where ↓T = {a | exists a′ ∈ T such that a $ a′}.
2. P(D)op〈αu, γ〉P↓(A)op is a Galois connection, where αu(S) =

⋃
{T | γ(T ) ⊆

S} = {a | γ(a) ⊆ S} , where (P,$P )op is (P,2P ).

γ

αo

P (A)

UI
[[ ]]ϕ A

[[ ]]ϕ

[[ ]]ϕ Aγ
UI

P(D)

αo
[[ ]]ϕ

γ

αu

opP (A)

UI[[ ]]ϕ A

[[ ]]ϕ

[[ ]]ϕ Aγ UI

opP(D)

[[ ]]ϕαu

6 P↓(A) is in fact the disjunctive completion of A [8,9], often used to lift a γ that
does not preserve $A into a γ that preserves ∪P↓(A), in effect adding disjunction to
P↓(A)’s internal logic.
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{ }

{...,−2,−1}

{0,1,2,3,...}

{...,−2,−1,0}

γ {neg,none}

{neg,zero,none} {neg,pos,none}

{zero,none}

{zero,pos,none}

{pos,none}

{neg,zero,pos,none}

{any,neg,zero,pos,none}

{none}

{ }

UI

P(Int) op
P (Sign) op

Fig. 5. Dualized disjunctive completion of Galois connection of signs

The one and the same γ is the upper adjoint of both Galois connections because
γ preserves both meets (intersections) and joins (unions) in P↓(A).7

Why two Galois connections? The one in Proposition 4(2) defines an underap-
proximation such that when we define [[φ]]A = αu[[φ]], we underapproximate the
concrete logic. The Galois connection in Proposition 4(1) can be used to over-
approximate transforms, f∗ : P(D) → P(D), by f 	 : P↓(A) → P↓(A). But the
logical interpretation, [[φ]]A = αo[[φ]], is sound iff, for all φ ∈ L, γ(αo[[φ]]) = [[φ]].

Figure 5 shows the completion of Sign to P↓(Sign)op. Here, αu is not onto,
which becomes significant later. Proposition 4 justifies the following:

Proposition 5. For φ ∈ L, the following are equivalent:

1. [[ · ]]A is sound for [[ · ]], that is, γ[[φ]]A ⊆ [[φ]], that is, [[φ]]A ⊆ αu[[φ]].
2. T ⊆ [[φ]]A implies γ(T ) ⊆ [[φ]], for all T ∈ P↓(A).
3. αo(S) ⊆ [[φ]]A implies S ⊆ [[φ]], for all S ∈ P(D).
4. [[φ]] ⊆ S implies [[φ]]A ⊆ αu(S), for all S ∈ P(D).

Proof. It is easy to prove Item 1 equivalent to each of 2, 3, and 4. Here is the
equivalence of 1 and 3:

1 implies 3: Assume αo(S) ⊆ [[φ]]A. By the definition of Galois connection,
S ⊆ γ[[φ]]A. By 1, S ⊆ φ.

3 implies 1: By the definition of the Galois connection, αo(γ[[φ]]A) ⊆ [[φ]]A.
Using 3 (set S = γ[[φ]]A), we have γ[[φ]]A ⊆ [[φ]]. �

The three adjunction maps, γ, αo, and αu, give us three ways to define soundness.
Items 3. and 4. in the Proposition justify the slogan that one “overapproximates
the model” and “underapproximates the logic” for sound static analysis.

Finally, we note that a soundness assertion of the form, “αo[[φ]] ⊆ [[φ]]A” is
faulty, because [[φ]] ⊆ γ(αo[[φ]]).

3 Logical Completeness

In symbolic logic, one formal system, A, is L-sound for another formal system,
C, iff every property φ ∈ L that is validated in A can be validated in C. When
7 If we use P(A) instead, we find that γ : P(A)→ P(D) does not preserve meets.
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the converse holds true as well, then A is L-complete for C. In like fashion, we
might strengthen each of the implications in Items 2-4 in Proposition 5 into
equivalences: For [[ · ]] : L → P(D) and [[ · ]]A : L → P↓(A), we define these
properties:

– best preservation: for all φ ∈ L and T ∈ P↓(A), T ⊆ [[φ]]A iff γ(T ) ⊆ [[φ]].
– strong preservation: for all φ ∈ L and S ∈ P(D), S ⊆ [[φ]] iff αo(S) ⊆ [[φ]]A.
– lower preservation: for all φ ∈ L and S ∈ P(D), [[φ]] ⊆ S iff [[φ]]A ⊆ αu(S).

In particular, strong preservation asserts for all c ∈ D, {c} |= φ iff there exists
some a0 ∈ A8 such that c ∈ γ(a0) and a0 |=A φ — every c that “makes φ
hold” can be validated by |=A (and a0). In contrast, best preservation states
that a |=A φ iff for all c ∈ γ(a), {c} |= φ — every a that “makes φ hold” can be
validated by |=A. We soon see that lower-preservation is equivalent, surprisingly,
to strong preservation.

The obvious question to ask is, “What is the relationship between the above
logical preservation properties and functional completeness?” Working from the
Galois connection, P(D)op〈αu, γ〉P↓(A)op, and the functions, [[ · ]] : L → P(D)
and [[·]]A : L → P↓(A), we calculate these definitions of functional completeness:9

– [[ · ]]A is B(αu)-complete for [[ · ]] iff αu[[φ]] = [[φ]]A

– [25] [[ · ]]A is F(γ)-complete for [[ · ]] iff [[φ]] = γ[[φ]]A

This strengthens into equalities the subset inclusions in Item 1, Proposition 5.
As before, we use the terms, “B-complete” and “F-complete,” as abbreviations
for B(αu)-complete and F(γ)-complete, respectively.

The relationships within this soup of definitions go as follows:

Theorem 6. For P(D)〈α, γ〉A, [[ · ]] : L → P(D), and [[ · ]]A : L → P↓(A),

– B-complete iff best preservation
– F-complete iff strong preservation iff lower preservation

Proof. The results follow from application of the definitions and the properties
of Galois connections. Here is the proof that F-completeness is equivalent to
lower preservation; thanks to Proposition 5, we need only prove the following:

(i) F-completeness and [[φ]]A ⊆ αu(S) imply [[φ]] ⊆ S: Assume [[φ]]A ⊆
αu(S); then, γ[[φ]]A ⊆ γ(αu(S)) ⊆ S, by definition of Galois connection. By
F-completeness, γ[[φ]]A = [[φ]] ⊆ S.

(ii) Lower preservation implies [[φ]] ⊆ γ[[φ]]A: By definition of Galois connec-
tion, [[φ]]A ⊆ αu(γ[[φ]]A). By lower preservation (what was proved in (i), where
we set S = γ[[φ]]A), we have the result. �

B- and F-completeness are independent, as shown by Figure 6. The first diagram
shows how F-completeness holds yet B-completeness fails when there are distinct
8 Indeed, the a0 is αo{c}.
9 We use implicitly the identity Galois connection on arguments from L.
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F-complete and not B-complete:

UI

[ ]]ϕαu

[[ ]]ϕ A

[[ ]]ϕ Aγ[[ ]]ϕ =

[

B-complete and not F-complete:

[ ]]ϕ A

[[ ]]ϕ Aγ

[

UI

[[ ]]ϕαu [[ ]]ϕ A=

Fig. 6. Independence of F- and B-completeness of interpretation functions

assertions in P↓(A) that concretize to the same set. For example, say that a |=A

φ1 ∨φ2 iff a |=A φ1 or a |=A φ2 (cf. Figure 4). Consider [[neg ∨ zero ∨ pos ]]A and
[[any ∨ neg ∨ zero ∨ pos ]]A, which denote different sets in P↓(Sign)op but both
concretize to Int . This is F-complete but not B-complete.

The absence of B-completeness in an abstract logic is a famous trouble spot,
e.g., we are asked to validate any |=A neg ∨ zero ∨ pos — the above definition
fails to do so, and a focus or materialization operation [14,26] must be employed
to decompose any into a set of covering cases, such as {neg, zero, pos} (because
γ(any) ⊆ γ(neg) ∪ γ(zero) ∪ γ(pos)), and a proof-by-cases analysis is under-
taken.10

The second diagram shows that F-completeness can fail when there is some
[[φ]] that cannot be exactly expressed in P↓(A). For example, without altering
Sign, add to L the new assertion, equals1 , such that [[equals1 ]] = {1}, and
define [[equals1 ]]A = αu[[equals1 ]] = {none}. F-completeness fails. The absence
of F-completeness produces spurious counterexamples, e.g., a static analysis of

x:= 1; if x=1 then safe() else error()

using Sign announces that error() is reachable. This false counterexample is
eliminated by counterexample guided abstraction refinement [2,3,27]), which adds
new values to Sign (in this case, one), moving towards F-completeness [16].

In the previous section, we noted that the set inclusion, αo[[φ]] ⊆ [[φ]]A,
does not guarantee soundness. Nonetheless, starting from Galois connection,
P(D)〈αo, γ〉P↓(A), we define yet one more variant of functional completeness:

[[ · ]]A is B(αo)-complete for [[ · ]] iff αo[[φ]] = [[φ]]A.

For clarity, we use O-complete as a synonym for B(αo)-complete. O-completeness
is again independent from F-completeness, but with the concept of a covering,
we can make many connections:

– For [[ · ]] : L → P(D) and γ : Q → P(D), γ covers [[ · ]] iff for all φ ∈ L,
[[φ]] ∈ γ[Q].

– For [[ · ]]A : L → P↓(A) and α : P → P↓(A), α covers [[ · ]]A iff for all φ ∈ L,
[[φ]]A ∈ α[P ].

10 In theory, the redundant elements in A can be removed by applying the backwards-
complete-core construction, closing the sets in P↓(A) under join.
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Proposition 7. Let α, γ be the adjoints of a Galois connection. Then,

– γ covers [[ · ]] iff γ(α[[φ]]) = [[φ]] for all φ ∈ L
– α covers [[ · ]]A iff α(γ[[φ]]A) = [[φ]]A for all φ ∈ L.

Proof. The results hold because each equivalence class in P(D) (resp., P↓(A))
holds exactly one value that lies in the image of γ[P↓(A)] (resp., α[P(D)]). �

Propositions 1, 2, and 7 characterize completeness:

Theorem 8. Let α, γ be the adjoints of a Galois connection:

– [[ · ]]A is F(γ)-complete for [[ · ]] iff γ covers [[ · ]] and [[φ]]A ∼γ α[[φ]], for all
φ ∈ L.

– [[ · ]]A is B(α)-complete for [[ · ]] iff α covers [[ · ]]A and [[φ]]A ∼γ α[[φ]], for all
φ ∈ L.

Proof. The first result is a direct translation of Proposition 1, where [[ · ]]	best =
α ◦ [[ · ]] ◦ idL, that is [[φ]]	best = α[[φ]], for φ ∈ L.

The second result follows less directly. In Proposition 2, Clause (i) becomes
φ = φ′ implies [[φ]] = [[φ′]], so only Clause (ii) remains: show α[[φ]] = [[φ]]A iff α

covers [[ · ]]A and [[φ]]A ∼γ α[[φ]]. The if-part is immediate; for the only-if-part,
α covers [[ · ]]A, because α[[φ]] = [[φ]]A implies that α(γ[[φ]]A) = α[[φ]] = [[φ]]A (cf.
the proof of Prop. 7). Next, γ[[φ]]A = γ(α[[φ]]) by applying γ. �

Both forms of completeness require the same, best equivalence-class precision
and vary only on the covering properties of α and γ.

Corollary 9

– If [[ · ]]A is F-complete for [[ · ]] and αu covers [[ · ]]A, then [[ · ]]A is B-complete.
– If [[ · ]]A is B-complete for [[ · ]] and γ covers [[ · ]], then [[ · ]]A is F-complete.
– If [[ · ]]A is F-complete for [[ · ]] and αo covers [[ · ]]A, then [[ · ]]A is O-complete.
– If [[ · ]]A is O-complete for [[ · ]] and γ covers [[ · ]], then [[ · ]]A is sound and

F-complete.

The Corollary explains why Ranzato and Tapparo, who work exclusively with
onto α functions, gravitate to proving F-completeness results [23,24,25].

4 Inductively Defined Abstract Logics

Given [[ · ]] : L → P(D), we can define [[ · ]]A : L → P↓(A) to be [[φ]]A = αu[[φ]], and
consequently, a |=A φ iff γ(a) ⊆ [[φ]], but this definition is not inductively defined
and is unlikely to be finitely computable. Assuming that L is defined inductively,
we denote its inductive abstract interpretation as [[·]]Aind : L → P↓(A) and define
it as

[[opi(φj)0<j≤ar(i)]]Aind = g	
i([[φi]]Aind)0<i≤ar(i)

where g	
i : P↓(A) → P↓(A) is sound for gi : P(D) → P(D).
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For example, based on Figure 4, we might define

[[a]]Aind = αu(γ(a))
[[φ1 ∧ φ2]]Aind = [[φ1]]Aind ∩P↓(A) [[φ2]]Aind

[[φ1 ∨ φ2]]Aind = [[φ1]]Aind ∪P↓(A) [[φ2]]Aind

[[[f ]φ]]Aind = p̃ref� [[φ]]Aind

It is well known that such a [[·]]Aind is sound for [[ · ]] and also that, for all gi

and g	
i , if each g	

i is B-complete (respectively, F-complete) for gi, then [[·]]Aind is
B-complete (F-complete) for [[ · ]]. Because the fixed-point operators are well
behaved, we can easily add recursively defined operators to the logic [11,25].

For a logic with operators, opi, and interpretations, gi, we define each g	
i best =

αu ◦ gi ◦ γar(i) : P↓(A)ar(i) → P↓(A) so that

[[opi(φj)0<j≤ar(i) ]]
A
best = g	

i best([[φj ]]
A
best)0<j≤ar(i)

Call this inductively defined interpretation, [[ · ]]Abest.

Corollary 10. [[ · ]]Abest is F-complete for [[ · ]] iff γ covers [[ · ]].

Corollary 11. If γ covers [[ · ]], then [[ · ]]Abest is B-complete for [[ · ]].
So, there is one crucial abstract interpretation where F-completeness implies B-
completeness. No dual result is known where B-completeness implies F-complete-
ness. Indeed, it is always the case that αu covers [[ · ]]Abest, so there is no relation
between the B-completeness of [[ · ]]Abest and αu-covering.

5 Applications

5.1 L = A

A standard static analysis computes on A-values and also uses them as the
assertions of a correctness or transformation logic.

Given C〈α, γ〉A, use the Galois connection’s internal logic: L = A, and c |= a
iff c ⊆ γ(a). Although the abstract judgement, a′ |=A a iff γ(a′) ⊆ γ(a), would
be best, one typically settles for its computable variant, a′ |=A a iff a′ $ a, that
is, [[a]]A = ↓a. This makes [[ · ]]A F(γ)-complete (and sound!) for [[ · ]]. But [[ · ]]A

might not be O-complete nor B-complete:

Proposition 12. For all a ∈ A, αo(γ(a)) ⊆ ↓a ⊆ αu(γ(a)). But when α is
onto, the second inclusion is an equality.

Say that f(c0) |= ap holds, and we try to show this by validating f 	
best(a0)) |=A

ap, where a0 = α(c0), but we fail. Since f 	
best(a0) $ ap iff f(γ(a0)) ⊆ γ(ap), we

must adjust either ap or a0; see Figure 3(a).
Perhaps we “weaken” ap by making f(γ(a0)) itself into a new canonical ele-

ment, i.e., A gets the new element, a′p, such that γ(a′p) = f(γ(a0)). This makes
f 	

best(a0) |=A a′p hold as well as f 	
best(a0) |=A ap , a′p. This is an F-refinement

step; see Figure 3(b).
Or we “strengthen” a0 to a new element, a1: Let c′ be a maximal element

from the set, f−1[γ(ap)]α ∩ [γ(a0)]α and define γ(a1) = c′. Now, α(c0) = a1, and
f 	

best(a1) |=A ap holds. This is a B-refinement step; see Figure 3(c).
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5.2 Partition Domains

An abstract domain used in model checking is the partition domain [3,23,24]:
Let D and A be discretely ordered sets, and let δ : D → A be an onto function;
δ defines the equivalence relation, c ∼δ c′ iff δ(c) = δ(c′), and it partitions D,
where A are the partition names. Define γ : A → P(D) as γ(a) = δ−1(a). There
is no Galois connection. The logic looks like Figure 4 but includes negation:

[[¬φ]] = ∼ [[φ]]

(∼ is set complement.) As usual, {c} |= φ iff c ∈ [[φ]].
From γ, we define γ, αo, and αu. Since P(A) is a Boolean lattice and γ is 1-1,

we have that γ preserves ∪, ∩, and ∼. In addition, [[ · ]]A, defined as

[[a]]A = αu(γ(a))
[[¬φ]]A = ∼ [[φ]]A

[[φ1 ∧ φ2 ]]
A = [[φ1 ]]

A ∩ [[φ2 ]]
A

[[φ1 ∨ φ2 ]]
A = [[φ1 ]]

A ∪ [[φ2 ]]
A

is F(γ)-complete and equals [[ · ]]Abest. Since both αu and αo cover [[ · ]]A, the logic
is also B- and O-complete.

The usual application of a partition domain is to model checking, and the
usual model-checking logic includes the modality, [f ]φ, for f : D → P(D) (cf.
Figure 4), which is abstracted by a sound f 	 : A → P(A) as follows:

[[[f ]φ]]A = p̃ref�
best

[[φ]]A, where p̃ref�(T ) = {a′ | f 	(a′) ⊆ T}.

We know that p̃ref�
best

= (p̃ref )	
best = αu ◦ p̃ref ◦ γ [29]. The definition is sound

but might not be complete.
The following holds for all abstract domains (not just partition domains):

Theorem 13. For p̃ref : P(D) → P(D), f : D → P(D), and f∗ : P(D) →
P(D), defined as f∗(S) = ∪c∈Sf(c),

1. p̃ref is F(γ)-complete iff f∗ is B(αo)-complete.
2. p̃ref is B(αu)-complete iff f∗ is F(γ)-complete.

Proof. We first prove 2. For the if-part, assume f∗ is F-complete; we must
show αu(p̃ref (S)) ⊆ (αu ◦ p̃ref ◦ γ)(αu(S)). When we expand the definitions
in the subset inclusion, we learn that we must assume f∗[γ(a)] ⊆ S and prove
f∗(γ(a)) ⊆ γ(αu(S)). The assumption expands to γ(αu(f∗(γ(a))) ⊆ γ(αu(S)).
Now, its left-hand side equals γ(αu(f∗(γ(↓a)))). Since f∗ is F-complete, this
equals f∗(γ(a)) and gives the result.

For the only-if-part, we must show for all S ∈ γ[P↓(A)] that f∗(S) ∈ γ[P↓(A)],
that is, f∗(γ(αu(S)))⊆(γ◦αu◦f∗)(γ(αu(S))). Now, f∗(γ(αu(S)))=f∗(∪a∈αu(S)).
By the B-completeness of p̃ref , which can be stated as, for all S, f∗(γ(a)) ⊆ S
iff f∗(γ(a)) ⊆ γ(αu(S)), we can instantiate S = f∗(γ(αu(S))), and we have that
f∗(γ(a)) ⊆ (γ ◦ αu)(f∗(γ(αu(S)))); the left-hand side equals ∪a∈αu(S)f

∗(γ(a)).
Since f∗ preserves unions, the result follows.
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We next prove 1. For the if-part, we must show that p̃ref (γ(T )) = (γ ◦ αu ◦
p̃ref ◦ γ)(T ). When we expand the definitions in the equation, we discover that
we must prove ∪{S | f∗(S) ⊆ γ(T )} ⊆ ∪{γ(a) | f∗(γ(a)) ⊆ γ(T )}. (Soundness
gives us the ⊇ inclusion.)

So, for arbitrary S0, assume that f∗(S0) ⊆ γ(T ). Since f∗ is B-complete,
we have that f∗(S0) ∼αo f∗(γ(αo(S0))). We also have S0 ⊆ γ(αo(S0)). Since
f∗(S0) ⊆ γ(T ), and the latter is a maximal point in its equivalence class, we
have that f∗(γ(αo(S0))) ⊆ γ(T ) as well, implying that γ(αo(S0)) lies in the goal
set, {γ(a) | f∗(γ(a)) ⊆ γ(T )}.

For the only-if-part, we must show αo(f∗(γ(αo(S)))) ⊆ αo(f∗(S)) for all S ∈
P(D). First consider the set, GS = p̃ref (γ(αo(f∗(S)))); we have that S ⊆ GS ,
because f∗(S) ⊆ γ(αo(f∗(S))) and p̃ref (f∗(S)) ⊇ S. Since p̃ref is F-complete,
we have GS ∈ γ[P↓(A)], and we also have γ(αo(S)) ⊆ GS .

This implies f∗(γ(αo(S))) ⊆ γ(αo(f∗(S))), by the definition of p̃ref . We apply
αo and obtain (αo ◦ f∗ ◦ γ ◦ αo)(S) ⊆ (αo ◦ γ ◦ αo ◦ f∗)(S) = αo(f∗(S)), which
is the result. �

Giacobazzi and Quintarelli [16] (and Mastroeni [20]) show how to apply the F-
complete shell construction to additive (continuous) f to achieve Item 1 above.

Recall that pref (S) = ∼ p̃ref (∼S) [19]; When pref is not F-complete, Ran-
zato and Tapparo apply the F-complete-shell construction to pref [23]. The
resulting abstract domain is still partitioned and its γ preserves ∼, so the equiv-
alence, ∼ pref (∼S) = p̃ref (S), yields F-completeness for p̃ref , too. γ is 1-1 as
well (it preserves ∼), meaning αo is onto, giving B-completeness.

5.3 Predicate Abstraction

When an abstract domain is generated from a set, A, of assertions for variables
within a program (e.g., x>y, ¬(y=0), ...), it is called a predicate abstraction
[1,2,18,27]. The resulting static analysis annotates program points with sets of
predicates that hold true at the program points.

We begin with the concrete state set, D, predicate set, A, and judgement
relation, |= ⊆ D × A. Think of A as a “subbasis” for domain generation. We
generate the Galois connection, P(D)〈α, γ〉P(A)op, where α(S) = {a | S |= a}
(it maps S to all the predicates that hold true for S) and γ(T ) = ∩a∈T {c | c |=
a}. (To understand γ, read T ∈ P(A)op as

∧
a∈T a.) The Galois connection is

overapproximating, so f 	 : P(A)op → P(A)op computes sound postconditions
for f∗ : P(D) → P(D). The logical assertions are conjunctions,

L 1 φ ::=
∧

T , where T ∈ P(A)

interpreted by P(A)’s internal logic: for c ∈ D, {c} |=
∧

T iff c ∈ γ(T ).
The definition of the abstract judgement is crucial: if it is merely T |=A

∧
T ′

iff T ′ ⊆ T , then we have F(γ)-completeness but likely lose B(αu)-completeness,
because it is possible that a1 �= a2 and γ{a1} ⊆ γ{a2}, e.g., γ{x>2} ⊆ γ{x>0}
but x>2 �|=A x>0. For this reason, implementations typically employ theorem
provers that enforce T |=A φ iff T ⇒ φ (that is, the prover uses T to deduce φ).



Comparing Completeness Properties of Static Analyses and Their Logics 197

A second situation where completeness can fail is the calculation of impre-
cise postconditions. Suppose that we fail to prove f 	(a0) |= φ. As we know
from Section 5.1, we can either weaken φ or strengthen a0. The latter is usu-
ally chosen, and we know that the B-complete refinement of f∗ corresponds to
the F-complete refinement of p̃ref (Theorem 13 and [16]). This is the standard
predicate-abstraction refinement strategy [2,27].

Disjunctive Predicate Abstraction: We can add disjunction to the predicate-
abstraction domain by constructing the disjunctive completion of P(A)op. The
elements of P↓(P(A)op) are downclosed sets of sets of A-elements. Read such a
T ∈ P↓(P(A)op) as the disjunctive normal form (DNF),

∨
T∈T (

∧
a∈T a).

This coincides with the definition of γ : P↓(P(A)op) → P(D), which is
γ(T ) =

⋃
T∈T γ(T ) =

⋃
T∈T (

⋂
a∈T γ(a)). Since the sets are downclosed (here,

closed under superset), both union (disjunction) and intersection (conjunction)
operations automatically normalize to DNF.11

Disjunctive completion gives us the Galois connection,P(D)〈αo, γ〉P↓(P(A)op),
completing the “basis” elements from P(A)op to DNF elements [2]. The Galois
connection supports this logic and its two interpretations:

φ ::= a |
∧

i>0 φi |
∨

i>0 φi

[[a]] = γ{a}
[[
∧

i≥0 φi ]] =
⋂

i≥0 [[φi]]
[[
∨

i≥0 φi ]] =
⋃

i≥0 [[φi]]

[[a]]A = {T ∈ P(A)op | T ⇒ a}
[[
∧

i>0 φi]]
A =

⋂
i>0 [[φi ]]

A

[[
∨

i>0 φi]]
A =

⋃
i>0 [[φi ]]

A

We have F(γ)-completeness, but B(αu)-completeness typically fails for disjunc-
tion, for the reasons given above.

6 Related Work

As noted in the Introduction, Galois-connection-based functional completeness
was defined by Cousot [6] and Cousot and Cousot [8]. Mycroft [22] was per-
haps the first to use B-completeness to define logical completeness; at the same
time, Clarke, Grumberg, and Long [4] defined “exactness,” stated in terms of
homomorphisms, h : D → A: h(c) |=A φ iff c |= φ, which is strong preservation.

Abstractions of state-transition systems led both Cleaveland, Iyer, and Yanke-
vich [5] and Dams, Gerth, and Grumberg [13] to define an “optimal” abstract
transition system as one that proves the most sound logical properties of a
concrete system. Their definitions are not Galois-connection based but use the
definition of strong preservation and yield strong preservation when Galois-
connections are present.

Cousot and Cousot [10] formalized B-functional completeness and showed that
it is preserved in inductively defined interpretations; they applied the results to
proving logical B-completeness of a family of temporal logics and showing that
B-completeness is preserved by fixed-point operators [11].
11 An implementation of DNF will likely employ the normalization law, S ∧ (

∨
i Ti)⇔∨

i(S ∧ Ti), instead of using downclosed sets of sets.
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Giacobazzi, Ranzato, and Scozzari [17] defined an iterativemethod for abstract-
domain completion so that transfer functions are B-complete. Giacobazzi and
Quintarelli [16] introduced F-completeness, defined its completion method, and
used it to formalize counter-example-guided-abstraction refinement [3].

A thorough study of logical F-completeness (strong preservation) has been
undertaken by Ranzato and Tapparo: for the class of partition domains, they
showed that the minimal refinement of a partition domain to possess all sound
properties of its corresponding concrete domain is iterative F-completion [23].
They also showed that the Paige-Tarjan algorithm for constructing a minimal
bisimular abstract-transition system is an instance of F-completion [24]. Finally,
they formalized strong preservation as logical F-completeness and showed that
F-completeness is preserved by fixed-point operators [25]. The present paper was
inspired by their work.

Finally, in his thesis [12], Dams proposed yet one more variant of logical
completeness — Dams’s strong preservation is defined as follows:

for all c ∈ D and a ∈ A, c ∈ γ(a) iff (for all φ, a |=A φ iff c |= φ).

For sets A and D, onto δ : D → A, and γ(a) = δ−1, Dams’s strong preservation
implies both strong and best preservation.
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Abstract. There are a number of choices to be made in the design
of a type based usage analysis. Some of these are: Should the analysis
be monomorphic or have some degree of polymorphism? What about
subtyping? How should the analysis deal with user defined algebraic data
types? Should it be a whole program analysis?

Several researchers have speculated that these features are important
but there has been a lack of empirical evidence. In this paper we present
a systematic evaluation of each of these features in the context of a full
scale implementation of a usage analysis for Haskell.

Our measurements show that all features increase the precision. It is,
however, not necessary to have them all to obtain an acceptable precision.

1 Introduction

In this article we study the impact of polymorphism, subtyping, whole program
analysis and accurate data types on type based usage analysis. Usage analysis
is an analysis for lazy functional languages that aims to predict whether an
argument of a function is used at most once. The information can be used to
reduce some of the costly overhead associated with call-by-need and perform
various optimizing program transformations. The focus of this paper is however
solely on improving the precision of usage analysis, not on its uses.

Polymorphism. Polymorphism is the primary mechanism for increasing the pre-
cision of a type based analysis and achieving a degree of context sensitivity.

Previous work by Peyton Jones and Wansbrough has indicated that polymor-
phism is important for usage analyses. Convinced that polymorphism could be
dispensed with they made a full scale implementation of a completely monomor-
phic usage analysis. However, it turned out that it was ”almost useless in
practice” [WPJ99]. They drew the conclusion that the reason was the lack of
polymorphism. In the end they implemented an improved analysis with a sim-
ple form of polymorphism that also incorporated other improvements [Wan02].
The resulting analysis gave a reasonable precision but there is no evidence that
polymorphism was the crucial feature.
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Studies of other program analyses have come to a different conclusion about
polymorphism. On example is points-to analysis for C for which several studies
have shown that monomorphic analyses [FFA00, HT01, FRD00, Das00, DLFR01]
give adequate precision for the purpose of an optimizing compiler [DLFR01].
Moreover, extending these analyses with polymorphism seem to have only a
moderate effect [FFA00, DLFR01].

Point-to analysis may not be directly relevant for usage analysis but it still
begs the question of how much polymorphism really can contribute to the pre-
cision of an analysis. One of the goals of this paper has been to shed some light
on this question.

Subtyping. Another important feature in type based analysis is subtyping. It
provides a mechanism for approximating a type by a less informative super
type. This gives a form of context sensitivity since a type may have different
super types at different call sites. It also provides a mechanism for combining
two types, such as the types of the branches of an if expression, by a common
super type. Thus, the effects of subtyping and polymorphism overlap.

This raises a number of questions. Does it suffice with only polymorphism or
only subtyping? How much is gained by having the combination?

Whole program analysis. Another issue that also concerns context sensitivity is
whole program analysis versus modular program analysis. A modular analysis
which considers each module in isolation must make a worst case assumption
about the context in which it appears.

This will clearly degrade the precision of the analysis. But how much? Is whole
program analysis a crucial feature? And how does it interact with the choice of
monomorphism versus polymorphism?

Data types. Another important design choice in a type based analysis is how
to deal with user defined data types. The intuitive and accurate approach may
require that the number of annotations on a type is exponential in the size of the
type definitions of the analyzed program. The common solution to the problem
is to limit the number of annotations on a type in some way, which can lead to
loss of precision. The question is how big the loss is in practice.

Contributions. In order to evaluate the above features, we have implemented a
range of usage analyses:

– With different degrees of polymorphism (Section 3)
– With and without subtyping (Section 4)
– Using different treatments of data types (Section 5)
– As whole program analyses and as modular analyses (Section 6)

All analyses have been implemented in the GHC compiler and have been
measured with GHC’s optimizing program transformations both enabled and
disabled. We present figures summarizing (the arithmetic mean of) the effective-
ness of each of the different features. More detailed figures for each of the pro-
grams we’ve analyzed can be found in the first authors licentiate thesis [Ged06].
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We have not measured every combination of the above features. Instead we
have started with a very precise analysis and successively turned off various
features to see how much precision is lost. The initial analysis is the most precise
in all but one aspect. It doesn’t use whole program analysis. Our reason for that
is that we wanted to stay close to how we would have implemented the analysis in
GHC. Since GHC supports separate compilation so does our base line analysis.

Our systematic evaluation shows that each of these features has a significant
impact on the precision of the analysis. Especially, it is clear that some kind of
context sensitivity is needed through polymorphism or subtyping. Our results
also show that the different features partly overlap. The combined effect of poly-
morphism and subtyping is for example not very dramatic although each one of
them has a large effect on the accuracy. Another example is that whole program
analysis is more important for monomorphic analysis than polymorphic analysis.

2 Usage Analysis

Implementations of lazy functional languages maintain sharing of evaluation by
updating. For example, the evaluation of

(λx.x + x) (1 + 2)

proceeds as follows. First, a closure for 1 + 2 is built in the heap and a reference
to the closure is passed to the abstraction. Second, to evaluate x+x the value of
x is required. Thus, the closure is fetched from the heap and evaluated. Third,
the closure is updated (i.e., overwritten) with the result so that when the value
of x is required again, the expression needs not be recomputed.

The same mechanism is used to implement lazy data structures such as po-
tentially infinite lists.

The sharing of evaluation is crucial for the efficiency of lazy languages. How-
ever, it also carries a substantial overhead which is often not needed. For example,
if we evaluate

(λx.x + 1) (1 + 2)

then the update of the closure is unnecessary because the argument is only used
once.

The aim of usage analysis is to detect such cases. The output of the analysis
is an annotated program. Each point in the program that allocates a closure in
the heap is annotated with 1 if the closure that is created at that point is always
used at most once. It is annotated with ω if the closure is possibly used more
than once or if the analysis cannot ensure that the closure is used at most once.

The annotations allow a compiler to generate code where the closures are
not updated and thus effectively turning call-by-need into call-by-name. Usage
analysis also enables a number of program transformations [PJPS96, PJM99].

Usage analysis has been studied by a number of researchers
[LGH+92, Mar93, TWM95, Fax95, Gus98, WPJ99, WPJ00, GS00, Wan02].
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2.1 Measuring the Effectiveness

We measured the effectiveness of the analyses by running them on the programs
from the nofib suite [Par93] which is a benchmarking suite designed to evaluate
the Glasgow Haskell Compiler (GHC). We excluded the toy programs and ran
our analysis on the programs classified in the category real but had to exclude
the following three programs: HMMS did not compile with GHC on our test
system, ebnf2ps is dependent on a version of Happy that we could not get to
work with our version of GHC, and veritas because many analyses ran out of
memory when analyzing it.

Despite the name of the category, the average size of the programs is unfor-
tunately quite small, ranging from 74 to 2,391 lines of code, libraries excluded.

The notion of effectiveness. When measuring the effectiveness it is natural to
do so by modifying the runtime system of GHC. The runtime system is modi-
fied to collect the data needed to compute the effectiveness during a program’s
execution.

The easiest way is to count how many created closures that are only used
once and how many of those closures that were detected by the analysis. This
can be implemented by adding three counters to the runtime system: one that is
incremented as soon as an updatable closure is created, one that is incremented
each time a closure is used a second time, and one that is incremented as soon
as a closure annotated with 1 is created. With these counters one can compute
an effectiveness of an analysis:

closures annotated with 1
created closures − closures used twice

This is the metric used by Wansbrough [Wan02].
A drawback of this approach is that it does not take into account that each

program point can only have one annotation – if any of the closures allocated at
a program point is used more than once, that program point has to be annotated
with ω for the analysis to be sound. Thus, any program point which has some
closures used more than once and some used at most once would make even
a perfect analysis get less than a 100 percent effectiveness. And such program
points are common.

What we would like to do is to compute the effectiveness by measuring the
proportion of program points that are correctly annotated instead of the propor-
tion of updates that are avoided. We, therefore, modified the run time system to
compute the best possible annotations which are consistent with the observed
run time behavior. I.e., if all the closures allocated at a specific program point is
used at most once during the execution, that program point could be annotated
with 1 otherwise ω. We did this by, for each closure, keeping track of at which
program point it was created. When a closure is used a second time we add its
program point to the set of program points that need to be annotated with ω.
We were careful to exclude dead code i.e. code that was not executed in the ex-
ecutions such as parts of imported libraries which were not used. It is important
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to note that this way of measuring is still based on running the program on a
particular input and a perfect analysis may still get an effectiveness which is less
than 100 percent.

Wansbrough’s and our metrics differ also at another crucial point. The for-
mer metric depends very much on how many times each program point that
allocates closures is executed. If a single program point allocates a majority of
all closures, the computed effectiveness will depend very much on whether that
single program point was correctly annotated by the analysis. In contrast, the
effectiveness computed with the latter measurement will hardly be affected by
one conservative annotation.

We think that our metric is more informative and have, therefore, used it for
all our measurements.

Optimizing program transformations. Our implementation is based on GHC
which is a state of the art Haskell implementation. The specific version of GHC
we have used is 5.04.3. GHC parses the programs and translates them into the
intermediate language Core, which is essentially System F [PJPS96]. When GHC
is run with optimizations turned on (i.e. given the flag -O), it performs aggres-
sive program transformation on Core before it is translated further. We inserted
our analyses after GHC’s program transformations just before the translation to
lower level representations.

We ran the analysis with GHC’s program transforming optimizations both
enabled and disabled. The latter gives us a measure of the effectiveness of an
analysis on code prior to program transformations. This is relevant because usage
information can be used to guide the program transformations themselves.

2.2 Implementation

Actually implementing all the analyses we report on in this paper would have
been a daunting task. To get around this problem we used the following trick: The
only analysis we actually implemented was the most precise analysis, with poly-
morphism, polymorphic recursion, subtyping and whole program analysis. This
analysis generated constraints, in the form of Constraint Abstractions [GS01].
These constraints have enough structure preserved from the original program
to enable us to identify precisely where we can change them to correspond to
a lesser precise analysis. We implemented several transformations on our con-
straints which effectively removed polymorphism, polymorphic recursion, sub-
typing, whole program analysis and which mimicked various ways of handling
data types, respectively.

Although this trick helped us greatly in performing the measurements it had
an unfortunate drawback. The transformed constraints, although semantically
equivalent to a less precise analysis, was very remote from what an actual analysis
would have generated. Several of our translations produced constraints that were
very hard for the constraint solver. Therefore, any timings that we might have
reported on would have been highly misleading. This is the reason why we have
chosen to exclude them from this paper.
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3 Polymorphism

We start by evaluating usage polymorphism. To see why it can be a useful
feature, consider the function that adds up three integers.1

plus3 x y z = x + y + z

Which usage type should we give to this function? Since the function uses all its
arguments just once, it seems reasonable to give it the following type.

Int1 → Int1 → Int1 → Intω

The annotations on the type express that all three arguments are used just once
by the function and that the result may be used several times. However, this
type is not correct. The problem is that the function may be partially applied:

map (plus3 (1 + 2) (3 + 4)) xs

If xs has at least two elements then plus3 (1+2) (3+4) is used more than once.
As a consequence, so is also (1 + 2) and (3 + 4).

To express that functions may be used several times we need to annotate also
function arrows. A possible type for plus3 could be:

Intω →ω Intω →ω Int1 →ω Intω

The function arrows are annotated with ω which indicates that plus3 and its
partial applications may be used several times. The price we pay is that the first
and the second argument are given the type Intω. This type is sound but it is
clearly not a good one for call sites where plus3 is not partially applied. What
is needed is a mechanism for separating call sites with different usage.

The solution to the problem is to give the function a usage polymorphic type:

∀ u0 u1 u2 u3 | u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

The type is annotated with usage variables and the type schema contains a set of
constraints which restrict how the annotations can be instantiated. A constraint
u ≤ u′ simply specifies that the values instantiated for u must be smaller than
or equal to the values instantiated for u′ where we have the ordering that 1 < ω.
This form of polymorphism is usually referred to as constrained polymorphism
or bounded polymorphism.

In our example, u2 ≤ u0 enforces that if a partial application of plus3 to one
argument is used more than once then that first argument is also used more
than once. Similarly, u3 ≤ u0 and u3 ≤ u1 makes sure that if we partially apply
plus3 to two arguments and use it more than once then both these arguments
are used more than once.
1 This example is due to Wansbrough and Peyton Jones [WPJ00].
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3.1 Degrees of Polymorphism

There are many different forms of parametric polymorphism. In this paper we
consider three different systems where usage generalization takes place at let-
bindings.

– An analysis with monomorphic recursion in the style of ML. Intuitively, this
gives the effect of a monomorphic analysis where all non-recursive calls have
been unwound.

– An analysis with polymorphic recursion [Myc84, Hen93, DHM95]. Intu-
itively, this gives the effect of the previous analysis where recursion has been
(infinitely) unwound.

– An analysis where the form of type schemas are restricted so that generalized
usage variables may not be constrained. A consequence of the restriction is
that an implementation need not instantiate (i.e., copy) a potentially large
constraint set whenever the type is instantiated. Wansbrough and Peyton
Jones [WPJ00] suggested this in the context of usage analysis and called it
simple usage polymorphism.
With simple usage polymorphism it is not possible to give plus3 the type

∀ u0 u1 u2 u3 | u2 ≤ u0, u3 ≤ u0, u3 ≤ u1.Intu0 →ω Intu1 →u2 Int1 →u3 Intω

because the generalized variables u0, u1, u2, u3 are all constrained. Instead
we can give it the type

∀ u.Intu →ω Intu →u Int1 →u Intω

where we have unified the generalized variables into one. This type is clearly
worse but it gives a degree of context sensitivity. An alternative is to give it
a monomorphic type. For example

Intω →ω Int1 →ω Int1 →1 Intω.

These types are incomparable and an implementation needs to make a heuris-
tic choice. We use the heuristic proposed by Wansbrough [Wan02] to general-
ize the types of all exported functions and give local functions monomorphic
types.

The analyses include usage subtyping; use an aggressive treatment of algebraic
data types and are compatible with separate compilation (i.e., we analyze the
modules of the program one by one in the same order as GHC). We discuss and
evaluate all these features later on.

3.2 Evaluation

The results are shown in Figure 1, which shows the average effectiveness of each
analysis.

The most striking observation is that the results are very different depending
on whether GHC’s optimizing program transformations are turned on or off.
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Fig. 1. Measurements of polymorphism

The effectiveness is much lower with program transformations turned on. While
we have yet to make any detailed studies of this phenomenon we here suggest
some possible explanations. Firstly, one possible contributor to this phenomenon
is GHC’s aggressive inliner [PJM99]. There is no need to create closures for
the arguments of inlined function calls and thus many targets for the analysis
disappears. The net effect is that the proportion of difficult cases (such as closures
in data structures and calls to unknown functions) increases which reduces the
effectiveness.

Another explanation is strictness analysis [Myc82]. Strictness analysis can
decide that the argument of a function is guaranteed to be used at least once
(in any terminating computation). In those cases there is no need to suspend
the evaluation of that argument. If an argument is used exactly once then it is
a target for both strictness and usage analysis. When the strictness analysis (as
part of GHC’s program transformation) is run first it removes some easy targets.

Our measurements also show that the polymorphic analyses are significantly
better than the monomorphic one. Polymorphic recursion turns out to have hardly
any effect compared to monomorphic recursion. Simple polymorphism comes half
way on unoptimized code – it is significantly better than monomorphism but sig-
nificantly worse than constrained polymorphism, which shows that it can serve as
a good compromise. This is, however, not the case for optimized code.

The largest surprise to us was that the accuracy of the monomorphic analysis
is relatively good. This seems to contradict the results reported by Wansbrough
and Peyton Jones [WPJ00] who implemented and evaluated the monomorphic
analysis from [WPJ99]. They found that the analysis was almost useless in prac-
tice and concluded that it was the lack of polymorphism that caused the poor
results. We do not have a satisfactory explanation for this discrepancy.

4 Subtyping

Consider the following code fragment.

let x =u 1 + 2 in . . .

Here u is the usage annotation associated with the closure for 1 + 2.
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The analysis can take u to be 1 if and only if x is used at most once. That
is assured by giving x the type Int1. The type system then makes sure that the
program is well typed only if x is actually used at most once.

If we on the other hand take u to be ω then x has the type Intω. It is always
sound to annotate a closure with ω regardless of how many times it is used. We,
therefore, want the term to be well typed regardless of how many times x is
actually used. The solution is to let Intω be a subtype of Int1. That is, if a term
has the type Intω we may also consider it to have the type Int1.

Subtyping makes the system more precise. Consider the function f .

f x y = if x ∗ x > 100 then x else y

It seems reasonable that we should be able to give it, for example, the type

Intω →ω Int1 →ω Int1.

This type expresses that if the result of the function is used at most once then
the second argument is used only once. The first argument is, however, used at
least twice regardless of how many times the result is used.

To derive this type we must have usage subtyping. Otherwise, the types of
the branches of the conditional would be incompatible – x has type Intω and y
has the type Int1. With subtyping we can consider x to have the type Int1.

Without subtyping x and y has to have the same type and the type of the
function must be

Intω →ω Intω →ω Intω

which puts unnecessary demands on y.
Subtyping can also give a degree of context sensitivity. Consider, for example,

the following program.
let f x = x + 1

a = 1 + 2
b = 3 + 4

in f a + f b + b

Here, b is used several times and is given the type Intω. Without subtyping nor
polymorphism we would have to give a the same type and the two call sites
would pollute each other.

When subtyping is combined with polymorphism it naturally leads to con-
strained polymorphism. Note, however, that subtyping is not the only source
of inequality constraints in a usage analysis. Inequality constraints are also
used for the correct treatment of partial application (see Section 3) and data
structures. Thus, we use constrained polymorphism also in the systems without
subtyping.

4.1 Evaluation

We have evaluated two systems without subtyping – a polymorphicly recursive
and a monomorphic analysis. Both analyses use an aggressive treatment of data
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Fig. 2. Measurements of subtyping

types and are compatible with separate compilation. Figure 2 shows the average
effectiveness of each analysis. We have included the system with polymorphic
recursion and subtyping and the monomorphic system with subtyping from Sec-
tion 3 for an easy comparison.

The results show that the accuracy of the monomorphic system without sub-
typing is poor. The precision is dramatically improved if we add subtyping or
polymorphism. Our explanation is that both polymorphism and subtyping gives
a degree of context sensitivity which is crucial.

The polymorphic system without subtyping is in principle incomparable to
the monomorphic system with subtyping. However, in practice the polymorphic
system outperforms the monomorphic one. The difference is much smaller when
the analyses are run on optimized code which is consistent with our earlier
observation that context sensitivity becomes less important because of inlining.

The combination of subtyping and polymorphism has a moderate but sig-
nificant effect when compared to polymorphic analysis without subtyping. The
effect is relatively larger on optimized code. The explanation we can provide is
that the proportion of hard cases - which requires the combination – is larger
because the optimizer has already dealt with many simple cases.

5 Algebraic Data Types

An important issue is how to deal with data structures such as lists and user
defined data types. In this section we evaluate some different approaches.

Let us first consider the obvious method. The process starts with the user
defined data types which only depend on predefined types. Suppose T is such a
type.

data T α = C1 τ | . . . | Cn τ

The types on the right hand side are annotated with fresh usage variables. If there
are any recursive occurrences they are ignored. The type is then parameterized
on these usage variables, u.

data T u α = C1 τ ′
1 | . . . | Cn τ ′

n
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Finally, any recursive occurrence of T is replaced with T u. The process con-
tinues with the remaining types in the type dependency order and when T is
encountered it is replaced with T u′ where u′ is a vector of fresh variables. If
there are any mutually recursive data types they are annotated simultaneously.

As an example consider the following data type for binary trees:

data Tree α = Node (Tree α) (Tree α) | Leaf α

When annotated, it contains three annotation variables:

data Tree 〈k0, k1, k2〉 α = Node (Tree 〈k0, k1, k2〉 α)k0 (Tree 〈k0, k1, k2〉 α)k1

| Leaf αk2

This approach is simple and accurate and we used it in all the analyses in
the previous sections. The net effect is equivalent to a method where all non-
recursive occurrences in a type are first unwound. As a result the number of
annotation variables can grow exponentially. An example of this is the following
data type:

data T0 〈k0〉 = C Intk0

data T1 〈k0, k1, k2, k3〉 = C′ (T0 〈k1〉)k0 | C′′ (T0 〈k3〉)k2

. . .

data Tn 〈k0, . . . , km〉 = C′
n (Tn−1 〈. . .〉)k0 | C′′

n (Tn−1 〈. . .〉)km/2

Here Tn will contain O(2n) usage variables.
In practice, the number of required variables sometimes grows very large.

The largest number we have encountered was a type in the Glasgow Haskell
Compiler which required over two million usage annotations. As a consequence
a single subtyping step leads to over two million inequality constraints and our
implementation simply could not deal with all those constraints. This problem
was the reason for why we had to exclude the program veritas from our study.
It is clear that an alternative is needed and we tried two different ones.

The first approach was to put a limit on the number of usage variables which
are used to annotate a type. If the limit is exceeded then we simply use each
variable several times on the right hand side of the type. We do not try to do
anything clever and when we exceed the limit we simply recycle the variables
in a round robin manner. This approach leads to ad-hoc spurious behavior of
the analysis when the limit is exceeded but maintains good accuracy for small
types. We tried this approach with a limit of 100, 10 and 1.

The second approach was to simply annotate all types on the right hand side
with only ω. The effect is that information is lost when something is inserted
into a data structure – the analysis simply assumes the worst about its usage.
Intuitively this can be thought of as a special case of the approach above where
the limit is zero.

All the analyses used for measuring the treatment of data types have subtyping
and polymorphic recursion and are compatible with separate compilation.
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Fig. 3. Measurements of treatments of data types

5.1 Evaluation

The average effectiveness of each analysis is shown in Figure 3.
The results are quite different for optimized and unoptimized code. In the case

of unoptimized code there is a clear loss in precision when we limit the number
of annotation variables. The loss is quite small when the limit is 100 but quite
dramatic when the limit is only 10. Going further and annotating with only one
or no variables has a smaller effect.

The situation is different for optimized code. Here there is only a small dif-
ference when the number of variables are limited to 100 or 10. But there is a
noticeable effect when one or no variables are used.

We believe that this effect stems from Haskell’s class system. When Haskell
programs are translated into Core each class context is translated to a so called
dictionary parameter. A dictionary is simply a record of the functions in an
instance of a class. Large classes leads to large records of functions which are
passed around at run time. When the number of annotations are limited, it sub-
stantially degrades the precision for these records. Presumably, most dictionaries
require more than 10 variables but less than 100 which explains the effect for
unoptimized code.

These records are often eliminated by GHC’s program transformations which
tries to specialize functions for each particular instance [Jon94, Aug93]. Thus, in
optimized code there are not so many large types which explains why the effect
of limiting the number of variables to 10 is quite small.

6 Whole Program Analysis

So far all the analyses have been compatible with separate compilation. In this
section we consider whole program analysis.

Suppose that f is an exported library function where the closure created for
x′ is annotated with u.

f x = let x′ =u x + 1 in λy.x′ + y

In the setting of separate compilation we have to decide which value u should
take without knowledge of how f is called. In the worst case, f is applied to one
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Fig. 4. Measurements of whole program analysis

argument and the resulting function is applied repeatedly. The closure of x′ is
then used repeatedly so we must assume the worst and let u be equal to ω. We
can then give f the type

Int1 →ω Int1 →ω Intω

With separate compilation we must make sure that the types of exported func-
tions are general enough to be applicable in all contexts. That is, it must still be
possible to annotate the remaining modules such that the resulting program is
well typed. Luckily, this is always possible if we ensure that the types of all ex-
ported functions have an instance where the positive (covariant) positions in the
type are annotated with ω. In the type of f this is reflected in that the function
arrows and the resulting integer are annotated with ω. Wansbrough and Peyton
Jones [WPJ00] calls this process pessimization. Further discussion can be found
in Wansbrough’s thesis [Wan02].

In the setting of whole program analysis this process in unnecessary which
improves the result of the analysis. We have chosen to evaluate the effect on two
analyses, the polymorphicly recursive analysis with subtyping and the monomor-
phic analysis with subtyping. Both analyses use the aggressive treatment of data
types.

6.1 Evaluation

The average effectiveness for each analysis is shown in Figure 4. They show that
whole program analysis improves both analyses significantly on both unopti-
mized and optimized code.

The effect is greater for the monomorphic analysis. The explanation is that
the inaccuracies that are introduced by the pessimization, needed for separate
compilation, spreads further in the monomorphic analysis due to the lack of con-
text sensitivity. One can think of pessimization as simulating the worst possible
calling context which then spreads to all call sites.

An interesting observation is that there is only a small difference between
the polymorphic and the monomorphic whole program analysis for optimized
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code. The combination of aggressive inlining and whole program analysis almost
cancels out the effect of polymorphism.

7 Related Work

The usage analyses in this paper build on the type based analyses in[TWM95,
Gus98, WPJ99, WPJ00, GS00, Wan02]. The use of polymorphism in usage analy-
sis was first sketched in [TWM95] and was developed further in [GS00] and
[WPJ00, Wan02] where simple polymorphism was proposed. Usage subtyping
was introduced in [Gus98, WPJ99]. The method for dealing with data types was
suggested independently by Wansbrough [Wan02] and ourselves [Ged03]. The
method for dealing with separate compilation is due to Wansbrough and Peyton
Jones [WPJ99].

The measurements of Wansbrough and Peyton Jones on their monomorphic
analysis with subtyping and a limited treatment of data types showed that is was
”almost useless in practice”. Wansbrough later made thorough measurements of
the precision of simple usage polymorphism with some different treatments of
data types in [Wan02]. He concludes that the accuracy of the simple usage poly-
morphism with a good treatment of data types is reasonable which is consistent
with our findings. He also compares the accuracy with a monomorphic usage
analysis but the comparison is incomplete – the monomorphic analysis only has
a very coarse treatment of data types.

Foster et al [FFA00] evaluate the effect of polymorphism and monomorphism
on Steensgaard’s equality based points-to analysis [Ste96] as well as Andersen’s
inclusion based points-to analysis [And94]. Their results show that the inclusion
based analysis is substantially better than the unification based. Adding poly-
morphism to the equality based analysis also has a substantial effect but adding
polymorphism to the inclusion based analysis gives only a small improvement.

There are clear analogies between Steensgaard’s equality based analysis and
usage analysis without subtyping. Andersen’s inclusion based analysis relates to
usage analysis with subtyping. Given these relationships, our results are con-
sistent with the results of Foster et al with one exception – the combination
of polymorphism and subtyping has a significant effect in our setting. However,
when we apply aggressive program transformations prior to the analysis and run
it in whole program analysis mode then our results coincide.

8 Conclusions

We have performed a systematic evaluation of the impact on the accuracy of
four dimensions in the design space of a type based usage analyses for Haskell.
We evaluated

– different degrees of polymorphism: polymorphic recursion, monomorphic re-
cursion, simple polymorphism and monomorphism,

– subtyping versus no subtyping,
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– different treatments of user defined types, and
– whole program analysis versus analysis compatible with separate compila-

tion.

Our results show that all of these features individually have a significant effect
on the accuracy. A striking outcome was that the results depended very much
on whether the analyzed programs were first subject to aggressively optimizing
program transformations. A topic for future work would be to investigate how
much each optimization affects the analysis result.

Our evaluation of polymorphism and subtyping showed that the polymorphic
analyses clearly outperform their monomorphic counterparts. The effect was
larger when the analyses did not incorporate subtyping. This is not surprising
given that subtyping gives a degree of context sensitivity and, thus, partially
overlaps with polymorphism. Polymorphic recursion turned out to give very
little when compared to monomorphic recursion. For unoptimized code, simple
polymorphism (where variables in types schemas cannot be constrained) was
shown to lie in between monomorphism and constrained polymorphism.

The measurements also showed that the treatment of data types is important.
The effectiveness of the different alternatives turned out to depend on whether
the code was optimized or not. We believe that the explanation is coupled to the
implementation of Haskell’s class system and, thus, that this observation might
be rather Haskell specific.

Whole program analysis turned out to have a rather large impact. The effect
was greater for monomorphic analysis. The reason is that the conservative as-
sumptions, that have to be made in the setting of separate compilation, have
larger impact due to the lack of context sensitivity in monomorphic analysis. In
fact, the whole program monomorphic analysis with subtyping was almost as
good as the whole program polymorphic analysis with subtyping on optimized
programs.

Finally we note that the effectiveness of even the most precise analysis seems
quite poor. For unoptimized code the best figure is 57% and for optimized code
the top effectiveness is a poor 19%. Is this because we have used an imprecise
measure or because of fundamental limitations of the form of usage analysis used
in this paper? We leave this question for future investigation.
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Abstract. In the context of distributed computations, local resources give rise to
an issue not found in stand-alone computations: the safety of mobile code. One
approach to the safety of mobile code is to build a modal type system with the
modality � that corresponds to necessity of modal logic. We argue that the modal-
ity � is not expressive enough for safe communications in distributed computa-
tions, in particular for the safety of mobile values. We present a modal language
which focuses on the safety of mobile values rather than the safety of mobile
code. The safety of mobile values is achieved with a new modality � which ex-
presses that given code evaluates to a mobile value. We demonstrate the use of
the modality � with a communication construct for remote procedure calls.

1 Introduction

A distributed computation is a cooperative process taking place in a network of nodes.
Each node is capable of performing a stand-alone computation and also communicating
with other nodes to distribute and collect code and data. Thus a distributed computation
has the potential to make productive use of all the nodes in the network simultaneously.

Usually a distributed computation assumes a heterogeneous group of nodes with
different local resources. A local resource can be either a permanent/physical object
available at a particular node (e.g., printer, database) or an ephemeral/semantic object
created during a stand-alone computation (e.g., heap cell, abstract data type). Local
resources are accessed via their references (e.g., handle for a database file, pointer to a
heap cell).

Local resources, however, give rise to an issue not found in stand-alone computa-
tions: the safety of mobile code, or in our terminology, the safety of mobile terms where
a term represents a piece of code. In essence, a node cannot access remote resources in
the same way that it accesses its own local resources, but it may receive mobile terms in
which references to remote resources are exposed. Therefore the safety of mobile terms
is achieved by supporting direct access to remote resources (e.g., remote file access,
remote memory access), as in Obliq [1], by transmitting copies of local resources along
with mobile terms, as in Facile [2], by preventing references to remote resources from
being dereferenced, as in Mobile UNITY [3], or by allowing all of these methods, as in
λdist [4]. Our paper focuses on the third case where we reject mobile terms containing
references to remote resources.

One approach to the safety of mobile terms is to build a modal type system with the
modality � [5,6,7,8] which is based on a spatial interpretation of necessity of modal
logic such as S4 and S5. The basic idea is that a value of modal type �A contains a
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mobile term that can be evaluated at any node. By requiring that a mobile term be from
a value of type �A, we ensure its safety without recourse to runtime checks.

A type system augmented with the modality � is not, however, expressive enough
for safe communications of values, i.e., the safety of mobile values. In other words, we
cannot rely solely on modal types �A to verify that a value communicated from one
node to another is mobile (e.g., when a remote procedure call returns, or when a value
is written to a channel). The reason is that in general, a value of type �A contains not a
mobile value but a mobile term. The evaluation of such a mobile term (with the intention
of obtaining a mobile value) may result in a value that is not necessarily mobile because
of references to local resources created during the evaluation.

As an example, consider a term of type int -> int in an ML-like language:

let
val new_reference = ref 0
val f = fn x => x + !new_reference

in
f

end

The above term can be evaluated at any node and thus may be used in building a mobile
term of type �(int -> int). The resultant value f, however, is not mobile because
it accesses a local resource new reference. In contrast, the following term, also
of type int -> int, cannot be used in building a mobile term of type �(int ->
int), but the resultant value is mobile because it does not access any local resource:

let
val v = !some_existing_reference
val f = fn x => x + v

in
f

end

Hence the modality � is irrelevant to the safety of mobile values, which should now be
verified by programmers themselves.

This paper investigates a new modality �which expresses that a given term evaluates
to a mobile value. The basic idea is that a term contained in a value of modal type �A
evaluates to a value that is valid at any node. For example, the first term above cannot
be used in building a term of type �(int -> int), but the second term above may
be used in building such a term. To obtain a value to be communicated to other nodes,
we evaluate a term contained in a value of type �A. In this way, we achieve the safety
of mobile values.

While the mobility of a term is independent of the mobility of the value to which
it evaluates, the modality � is weaker than the modality � in that we can emulate �
with �. For example, we may define �A as �(unit -> A), in which case we check
the mobility of a term M of type A by checking the mobility of a value fn _ => M
of type unit -> A. Thus � is inherently more expressive than �, and the use of �
practically eliminates the need for �. The converse is not the case, however: we cannot
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emulate � with � because the modality � requires at least a distinction between terms
and values, which is not provided by the type system for the modality �.

Since the modality � is inadequate for ensuring the safety of mobile values, safe
communications are restricted to mobile terms if the underlying type system uses only�. Such a restriction leads to an unusual implementation of common communication
constructs in distributed computations. For example, in λrpc by Jia and Walker [7] and
Lambda 5 by Murphy et al. [8], a remote procedure call returns a mobile term (instead
of a mobile value) which the caller node needs to further evaluate in order to obtain
the final result of the remote procedure call. By focusing on mobile values rather than
mobile terms, the modality� avoids such anomalies and gives a faithful implementation
of common communication constructs.

In Sections 2 and 3, we develop a call-by-value language λ� with mutable refer-
ences and the modality �. We choose mutable references as a representative example
of local resources; other kinds of local resources can be treated in an analogous way.
We formulate its type system in the natural deduction style by giving introduction and
elimination rules for each connective and modality. The modality � requires us to intro-
duce a typing judgment differentiating values from terms. The type system takes into
account primitive types (such as boolean values and integers) for which mobility is an
inherent property.

In Section 4, we develop λ� into λN
� which has a network operational semantics

and is thus capable of modeling distributed computations. We demonstrate the use of
modal types with a communication construct for remote procedure calls. The safety of
mobile terms and mobile values is shown by type safety of λN

� , i.e., its progress and type
preservation properties.

Section 5 compares λN
� with other modal languages for distributed computations.

Section 6 concludes with future work. Due to space limitations, we refer the reader to
our technical report [9] for details of all proofs.

2 Call-by-Value Language λ with Mutable References

This section reviews the type system of λ, a typical call-by-value language with mutable
references, in the context of distributed computations. Figure 1 shows the definition of
λ.

The syntax of λ uses metavariables A, B,C for types and M,N for terms. () is an
expression of type unit, which we include as an example of a primitive type. λx : A.M
and M M′ are a λ-abstraction and a λ-application, respectively. ref M allocates a fresh
reference, !M dereferences an existing reference, and M := M′ assigns a new value to a
reference; a location l, of type ref A, is a value for a reference.

A variable x with binding x : A is assumed to hold a value because λ uses the call-
by-value strategy. We use a typing judgment Γ | Ψ � M : A to mean that term M has
type A under typing context Γ and store typing Ψ ; a store typing judgment Ψ � ψ okay
means that store ψ conforms to store typing Ψ .

The operational semantics of λ uses a reduction judgment M | ψ −→ M′ | ψ′ to mean
that term M with store ψ reduces to term M′ with store ψ′ where ψ = ψ′ is allowed.
A β-reduction judgment M −→β M′ uses a capture-avoiding substitution [V/x]M de-
fined in a standard way. We write φ�M� for a term obtained by filling the hole [] in an
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type A ::= unit | A→ A | ref A
term M ::= () | x | λx : A.M | M M | ref M | !M | M := M | l
value V ::= () | λx : A.M | l
typing context Γ ::= · | Γ, x : A
store typing Ψ ::= · | Ψ, l �→ A
store ψ ::= · | ψ, l �→ V

Γ | Ψ � () : unit
Unit

x : A ∈ Γ
Γ | Ψ � x : A

Var
Γ, x : A | Ψ � M : B

Γ | Ψ � λx : A.M : A→ B
→I

Γ | Ψ � M : A→ B Γ | Ψ � N : A
Γ | Ψ � M N : B

→E

Γ | Ψ � M : A
Γ | Ψ � ref M : ref A

Ref
Γ | Ψ � M : ref A
Γ | Ψ � !M : A

Deref
Γ | Ψ � M : ref A Γ | Ψ � N : A

Γ | Ψ � M := N : unit
Assign

Ψ (l) = A
Γ | Ψ � l : ref A

Loc
dom(Ψ ) = dom(ψ) · | Ψ � ψ(l) : Ψ (l) for every l ∈ dom(ψ)

Ψ � ψ okay
Store

(λx : A.M) V −→β [V/x]M

evaluation context φ ::= [] | φ M | V φ | ref φ | !φ | φ := M | V := φ

M −→β M′

φ�M� | ψ −→ φ�M′� | ψ Redβ
l � dom(ψ)

φ�ref V� | ψ −→ φ�l� | ψ, l �→ V
Ref

ψ(l) = V

φ�!l� | ψ −→ φ�V� | ψ Deref
φ�l := V� | ψ −→ φ�()� | [l �→ V]ψ

Assign

Fig. 1. Definition of the language λ

evaluation context φ with M. [l �→ V]ψ replaces l �→ V ′ in ψ by l �→ V; we write ψ(l)
and Ψ (l) for the value and the type to which l is mapped under ψ and Ψ , respectively.

In the context of distributed computations, x : A in a typing context Γ means that
variable x holds a value of type A that is valid at a hypothetical node where typecheck-
ing takes place, which we call the current node throughout the paper. Then a typing
judgment Γ | Ψ � M : A means that if both typing context Γ and store typing Ψ are
satisfied, the evaluation of term M at the current node returns a value V of type A. It
does not, however, tell us if M is a mobile term that can be evaluated at other nodes.
More importantly, it does not tell us if V is a mobile value that is valid at other nodes.
Therefore the above type system is not expressive enough for the safety of mobile terms
and mobile values in distributed computations.
λ� extends λ with the modality � which is concerned with where we can use the

result of evaluating a given term. We call λ� a modal language because of its use of the
modality � in the type system. Although its type system addresses the safety of mobile
values, λ� is still a language for stand-alone computations in which no communications
between nodes actually take place. The modality � does not originate from modal logic,
but the type system of λ� reuses typing judgments for necessity of modal logic by
Pfenning and Davies [10].

3 Modal Language λ�

The idea behind the modality � is two-fold. First, if a term M is well-typed under an
empty typing context and an empty store typing, i.e., · | · � M : A, we can evaluate it at
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any node. Intuitively M is valid at any node, or globally valid, because its evaluation de-
pends on no existing local resources. As a special case, if a value V satisfies · | · � V : A,
it is globally valid because it does not contain references (to local resources). Second
the typing judgment Γ | Ψ � M : A of λ is unable to express the property that the value
to which term M evaluates is globally valid. Therefore we need an additional typing
judgment for the type system of λ� so as to express such properties of terms.

In order to indicate that a variable stores a globally valid value, we introduce a global
typing context Δ. Γ is now called a local typing context.

global typing context Δ ::= · | Δ, x ∼ A
local typing context Γ ::= · | Γ, x : A

A binding x ∼ A in Δmeans that variable x holds a globally valid value of type A; hence
a global typing context does not affect the mobility of a term being typechecked.

We use a typing judgment Δ;Γ | Ψ � M : A to mean that under global typing context
Δ, local typing contextΓ, and store typingΨ , term M evaluates to a value of type A valid
at the current node; it may be viewed as a typing judgment for λ where a typing context
is split into Δ and Γ. We introduce a new form of typing judgment Δ;Γ | Ψ � M ∼ A
to mean that M evaluates to a globally valid value of type A (which is also valid at the
current node). By the definition of these typing judgments, the following typing rules
hold independently of the syntax of λ�:

x ∼ A ∈ Δ
Δ;Γ | Ψ � x ∼ A

GVar
x ∼ A ∈ Δ

Δ;Γ | Ψ � x : A
GVar′

Δ; · | · � V : A
Δ;Γ | Ψ � V ∼ A

GVal

The rule GVar′ says that a globally valid variable x in x ∼ A is valid at the current node.
The rule GVal conforms to the definition of the new typing judgment: the premise check
if V is globally valid, in which case the conclusion holds because V is already a value.

The type system of λ� classifies types into three kinds: primitive types P, potentially
global types G, and local types L. A primitive type is one for which mobility is an
inherent property. For example, (), of type unit, is atomic and cannot contain references
to local resources. Therefore values of type unit are always globally valid, which implies
that unit is a primitive type. Formally we define primitive types as follows:

Definition 1. P is a primitive type if and only if Δ;Γ | Ψ � V : P implies Δ; · | · � V : P.

By the definition of primitive types, Δ;Γ | Ψ � M : P semantically implies
Δ;Γ | Ψ � M ∼ P. In order to relieve the programmer of the burden of explicitly ex-
pressing mobility for primitive types, λ� provides a separate typing rule for primitive
types:

Δ;Γ | Ψ � M : P
Δ;Γ | Ψ � M ∼ P Prim∼

In contrast to primitive types, a local type L has no globally valid values associated
with it. For example, locations, of type ref A, can never be globally valid, which im-
plies that ref A is a local type. Thus Δ;Γ | Ψ � M ∼ L never holds. (See Proposition 2.)
A value of a potentially global type may or may not be globally valid depending on
whether it contains references to local resources. For example, a function type A → B
is a potentially global type.
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λ� introduces two new terms box M and letbox x = M in N:

term M ::= · · · | box M | letbox x = M in M
value V ::= · · · | box M

box M has a modal type �A, and expects M to evaluate to a globally valid value.
letbox x = M in N expects M to evaluate to box M′; then it evaluates M′ before sub-
stituting the resultant value for x in N. The β-reduction rule for the modality � uses a
capture-avoiding substitution [V/x]M extended in a standard way.

letbox x = box V in M −→β [V/x]M
evaluation context φ ::= · · · | letbox x = φ in M | letbox x = box φ in M

box M corresponds to the introduction rule for the modality �. Note that in
letbox x = M in N, the type of M does not determine the form of the typing judgment
for the whole term. That is, regardless of the type of M, there are two possibilities for
where the result of evaluating N is valid: at the current node and at any node. Therefore
� has one introduction rule and two elimination rules:

Δ;Γ | Ψ � M ∼ A
Δ;Γ | Ψ � box M : �A �I

Δ;Γ | Ψ � M : �A Δ, x ∼ A;Γ | Ψ � N : C
Δ;Γ | Ψ � letbox x = M in N : C �E

Δ;Γ | Ψ � M : �A Δ, x ∼ A;Γ | Ψ � N ∼ C
Δ;Γ | Ψ � letbox x = M in N ∼ C �E′

Figure 2 summarizes the definition of λ�. The operational semantics of λ� uses
the same reduction judgment M | ψ −→ M′ | ψ′ as in λ. Proposition 3 confirms that
Δ;Γ | Ψ � M ∼ A is stronger than Δ;Γ | Ψ � M : A.

Proposition 2. If no variables are bound to local types in Δ, then Δ;Γ | Ψ � M ∼ L is
not derivable. That is, if Δ;Γ | Ψ � M ∼ A, then A is not a local type.

Proposition 3. The rule
Δ;Γ | Ψ � M ∼ A
Δ;Γ | Ψ � M : A Global is admissible.

3.1 Example

We illustrate the use of the modality � by rewriting in λ� the two examples in Introduc-
tion. We assume a primitive type int for integers and an infix operator + for adding two
integers. We encode a modal type �A as �(unit→ A), and check the mobility of a term
M of type A by checking the mobility of a value λ : unit.M of type unit → A where
denotes a fresh variable.

The first example is written in λ� as follows:

M1 = (λr : ref int. λx : int. x + !r) (ref 0)

We cannot use M1 to build a term of type �(int→ int) because there is no typing deriva-
tion of Δ;Γ | Ψ � M1 ∼ int→ int:

(no typing rule applicable)
Δ;Γ | Ψ � (λr : ref int. λx : int. x + !r) (ref 0) ∼ int→ int

Δ;Γ | Ψ � box (λr : ref int. λx : int. x + !r) (ref 0) : �(int→ int)
�I
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type A ::= P |G | L
primitive type P ::= unit
potentially global type G ::= A→ A | � A
local type L ::= ref A
term M ::= · · · | box M | letbox x = M in M
value V ::= · · · | box M
global typing context Δ ::= · | Δ, x ∼ A
local typing context Γ ::= · | Γ, x : A

x ∼ A ∈ Δ
Δ;Γ | Ψ � x ∼ A

GVar
x ∼ A ∈ Δ

Δ;Γ | Ψ � x : A
GVar′

Δ;Γ | Ψ � M ∼ A
Δ;Γ | Ψ � box M : �A

�I
Δ;Γ | Ψ � M : �A Δ, x ∼ A;Γ | Ψ � N : C

Δ;Γ | Ψ � letbox x = M in N : C
�E

Δ;Γ | Ψ � M : �A Δ, x ∼ A;Γ | Ψ � N ∼ C
Δ;Γ | Ψ � letbox x = M in N ∼ C �E′

Δ;Γ | Ψ � M : P
Δ;Γ | Ψ � M ∼ P

Prim∼ Δ; · | · � V : A
Δ;Γ | Ψ � V ∼ A

GVal

letbox x = box V in M −→β [V/x]M

evaluation context φ ::= · · · | letbox x = φ in M | letbox x = box φ in M

Fig. 2. Definition of the modal language λ�

M1 itself, however, is mobile because λ :unit.M1 is mobile:

...
Δ; · | · � λ :unit. (λr : ref int. λx : int. x + !r) (ref 0) : unit→ (int→ int)
Δ;Γ | Ψ � λ :unit. (λr : ref int. λx : int. x + !r) (ref 0) ∼ unit→ (int→ int) GVal

The second example is written in λ� as follows where variable r is bound to an
existing reference of type ref int:

M2 = letbox v = box !r in λx : int. x + v

We can use M2 to build a term of type �(int→ int):

Δ;Γ, r : ref int | Ψ � r : ref int
Var

Δ;Γ, r : ref int | Ψ � !r : int
Deref

Δ;Γ, r : ref int | Ψ � !r ∼ int
Prim∼

Δ;Γ, r : ref int | Ψ � box !r : �int
�I

...
Δ, v ∼ int; x : int | · � x + v : int

Δ, v ∼ int; · | · � λx : int. x + v : int→ int
→I

Δ, v ∼ int;Γ, r : ref int | Ψ � λx : int. x + v ∼ int→ int
GVal

Δ;Γ, r : ref int | Ψ � letbox v = box !r in λx : int. x+v ∼ int→ int
�E

Δ;Γ, r : ref int | Ψ � box letbox v = box !r in λx : int. x + v : �(int→ int)
�I

M2 itself, however, is not mobile because λ :unit.M2 is not mobile:

(impossible to typecheck because of r)
Δ; · | · � λ :unit. letbox v = box !r in λx : int. x + v : unit→ (int→ int)

Δ;Γ, r : ref int | Ψ � λ :unit. letbox v = box !r in λx : int. x + v ∼ unit→ (int→ int)
GVal
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A more straightforward but less satisfactory translation of the second example uses a
λ-application instead of a letbox construct:

M′2 = (λv : int. λx : int. x + v) (!r)

M′2 is operationally equivalent to M2, but cannot be used in building a term of type
�(int→ int):

(no typing rule applicable)
Δ;Γ, r : ref int | Ψ � (λv : int. λx : int. x + v) (!r) ∼ int→ int

Δ;Γ, r : ref int | Ψ � box (λv : int. λx : int. x + v) (!r) : �(int→ int) �I

The reason why box M′2 fails to have type �(int→ int) is that the type of
λv : int. λx : int. x + v, namely int → (int→ int), fails to express that a mobile value
of type int → int is returned. In fact, the inner λ-abstraction λx : int. x + v cannot be a
mobile value anyway, since a binding v ∼ int is not added to a global typing context.

We could introduce a new type A � B for those λ-abstractions taking a value of
type A and returning a mobile value of type B. The typing rules for the new connective
� are given as follows:

Δ;Γ, x : A | Ψ � M ∼ B
Δ;Γ | Ψ � λx : A.M : A�B

→I�
Δ;Γ | Ψ � M : A�B Δ;Γ | Ψ � N : A

Δ;Γ | Ψ � M N ∼ B
→E�

Although the new connective�allows more flexibility in programming, we decide not
to include it in the definition of λ� because a simple encoding of A�B as A→ �B suf-
fices. For example, we can eliminate the rule→I� by translating λx : A.M : A�B into
λx : A. box M : A→ �B and the rule→E� by translating M N into letbox v = M N in v.

3.2 Type Safety of λ�

The proof of type safety of λ� is routine except for the formulation of the substitution
theorem (Theorem 4). In the second clause of the substitution theorem, Δ; · | · � V : A
proves that V is a globally valid value of type A, which we substitute for variable x in term
M. Corollary 5 follows from the definition of primitive types as given in Definition 1.

Theorem 4 (Substitution)
If Δ;Γ | Ψ � V : A and Δ;Γ, x : A | Ψ � M : C, then Δ;Γ | Ψ � [V/x]M : C.
If Δ;Γ | Ψ � V : A and Δ;Γ, x : A | Ψ � M ∼ C, then Δ;Γ | Ψ � [V/x]M ∼ C.
If Δ; · | · � V : A and Δ, x ∼ A;Γ | Ψ � M : C, then Δ;Γ | Ψ � [V/x]M : C.
If Δ; · | · � V : A and Δ, x ∼ A;Γ | Ψ � M ∼ C, then Δ;Γ | Ψ � [V/x]M ∼ C.

Corollary 5
If Δ;Γ | Ψ � V : P and Δ, x ∼ P;Γ | Ψ � M : C, then Δ;Γ | Ψ � [V/x]M : C.
If Δ;Γ | Ψ � V : P and Δ, x ∼ P;Γ | Ψ � M ∼ C, then Δ;Γ | Ψ � [V/x]M ∼ C.

Theorem 6 (Progress). Suppose that term M satisfies ·; · | Ψ � M : A or·; · |Ψ � M ∼ A
for some store typing Ψ and type A. Then either:

(1) M is a value, or
(2) for any store ψ such that Ψ � ψ okay, there exist some term M′ and store ψ′ such

that M | ψ −→ M′ | ψ′.
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Theorem 7 (Type preservation)

Suppose

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ � M : A
Ψ � ψ okay
M | ψ −→ M′ | ψ′

.

Then there exists a store typing Ψ ′ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ ′ � M′ : A
Ψ ⊂ Ψ ′
Ψ ′ � ψ′ okay

.

Suppose

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ � M ∼ A
Ψ � ψ okay
M | ψ −→ M′ | ψ′

.

Then there exists a store typing Ψ ′ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ ′ � M′ ∼ A
Ψ ⊂ Ψ ′
Ψ ′ � ψ′ okay

.

3.3 Logic for λ�

The type system for modal types �A is unusual in that it differentiates values (i.e.,
terms in weak head normal form) from ordinary terms, as shown in the rule GVal. This
differentiation implies that the logic corresponding to the modality � via the Curry-
Howard isomorphism requires a judgment that inspects not only hypotheses in a proof
but also the proof structure itself (e.g., inferences rules used in the proof). Thus the
modality � sets itself apart from other modalities and is not found in any other logic.

In the pure fragment of λ� without primitive types and local types, the modality �
shows similarities with modal possibility � and lax modality © in [10]. Specifically a
proof-theoretic analysis of � gives rise to a new form of substitution 〈M/x〉N which is
defined inductively on the structure of the term being substituted (i.e., M) instead of the
term being substituted into (i.e., N). Let us interpret a β-reduction rule as the reduction
of a typing derivation in which an introduction rule is followed by a corresponding
elimination rule. For example, the β-reduction rule for the connective→may be seen as
the reduction of the following typing derivation in the pure λ-calculus (where we omit
store typings):

Γ, x : A � M : B
Γ � λx : A.M : A→ B →I

Γ � N : A
Γ � (λx : A.M) N : B →E −→β Γ � [N/x]M : B

Likewise we obtain a β-reduction rule for � from the reduction of a typing derivation
in which the introduction rule �I is followed by the elimination rule �E or �E′ (where
we omit store typings):

Δ;Γ � M ∼ A
Δ;Γ � box M : �A �I

Δ, x ∼ A;Γ � N : C
Δ;Γ � letbox x = box M in N : C �E

−→β Δ;Γ � 〈M/x〉N : C

To see why 〈M/x〉N is defined inductively on the structure of M, observe that the re-
duction of letbox x = box M in N requires an analysis of M instead of N. The reason
is that only a value can be substituted for x, but M may not be a value; therefore we
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have to analyze M to decide how to transform the whole term so that x is eventually re-
placed by a value. Conceptually N should be replicated at those places within M where
the evaluation of M is finished, so that M and N are evaluated exactly once and in that
order. If M is already a value V , we reduce the whole term to [V/x]N. Thus we are led
to define 〈M/x〉N as follows:

〈V/x〉N = [V/x]N
〈letbox x′ = M′ in M′′/x〉N = letbox x′ = M′ in 〈M′′/x〉N

Note that we cannot define 〈M1 M2/x〉N because without primitive types and the rule
Prim∼, there is no typing derivation of Δ;Γ � M1 M2 ∼ A and thus box M1 M2 cannot
be well-typed.

In the presence of primitive types, the β-reduction

letbox x = box M in N −→β 〈M/x〉N
is no longer valid because letbox x = box M in N may typecheck while 〈M/x〉N is
undefined. For example, M = M1 M2 of type unit satisfies Δ;Γ � M ∼ unit by the
rule Prim∼, but 〈M1 M2/x〉N is undefined. Intuitively the rule Prim∼ disguises an un-
analyzable term of a primitive type as an analyzable term. Thus, in order to reduce
letbox x = box M in N, the operational semantics of λ� is forced to reduce M into a
value V first, instead of analyzing M to transform the whole term. Then an ordinary
substitution [V/x]N suffices for the reduction of letbox x = box M in N.

We close this section with a brief discussion of the properties of the modality �.

– �A→ A λx :�A. letbox y = x in y
A mobile value is a special case of an ordinary term.

– �A→ ��A λx :�A. letbox y = x in box box y
A mobile value itself is mobile.

– �(A→ B)→ �A� �B
A mobile λ-abstraction does not necessarily return a mobile value.

4 λN
� with a Network Operational Semantics

While the type system of λ� is appropriate for understanding the role of the modality
�, it is not expressive enough for distributed computations which may generate terms
whose type is determined by remote nodes. For example, a future construct [11] initiates
a stand-alone computation at a remote node and returns a pointer to the remote node;
then the type of the pointer is determined by the term being evaluated at the remote
node.

This section extends the type system of λ� so that we can typecheck such terms,
and also develop a network operational semantics to model distributed computations.
We refer to the resultant language as λN

� . We incorporate a communication construct
for remote procedure calls into λ� so as to allow communications between nodes to
actually take place. Type safety of λN

� ensures the safety of mobile terms and mobile
values.



A Modal Language for the Safety of Mobile Values 227

4.1 Extended Type System and Network Operational Semantics

We represent the state of a network with a configuration π which records term M and
store ψ associated with each node γ. A configuration typing Π records the type of the
term being evaluated at each node. We assume that no node appears more than once in
π, and consider Π as an unordered set. As a new term, γ serves as a reference to a node.

term M ::= · · · | γ (node reference)
configuration π ::= · | π, {M | ψ @ γ}
configuration typing Π ::= · | Π, γ ∼ A (A � L)

– {M | ψ@ γ} in π means that node γ is currently evaluating term M with store ψ.
– γ ∼ A in Π means that the term at node γ evaluates to a value of type A. For the

sake of simplicity, we require that every term in a network evaluates to a globally
valid value.

The extended type system is formulated with a configuration typing judgment
Π � π okay which means that configuration π has configuration typing Π . In order
to be able to typecheck a node reference γ (which is a term), we include a configura-
tion typingΠ in each typing judgment: Δ;Γ | Ψ | Π � M : A, Δ;Γ | Ψ | Π � M ∼ A, and
Ψ | Π � ψ okay. The rules for the extended type system are derived from (and given the
same name as) the previous rules by including a configuration typing in every typing
judgment. We need two additional typing rules Node and Node′ for node references;
the rule Conf may be regarded as the definition of the configuration typing judgment.

γ ∼ A ∈ Π
Δ;Γ | Ψ | Π � γ ∼ A

Node
γ ∼ A ∈ Π

Δ;Γ | Ψ | Π � γ : A Node′

dom(Π) = dom(π)
γ ∼ A ∈ Π
Ψ | Π � ψ okay
·; · | Ψ | Π � M ∼ A

for every {M | ψ@ γ} ∈ π

Π � π okay Conf

The network operational semantics is formulated with a configuration reduction
judgment π =⇒ π′, which means that configuration π reduces (or evolves) to config-
uration π′. We provide two rules for the configuration reduction judgment:

M | ψ −→ M′ | ψ′
π, {M | ψ @ γ} =⇒ π, {M′ | ψ′ @ γ} Red

π, {φ�γ′� | ψ @ γ} , {V | ψ′ @ γ′} =⇒ π, {φ�V� | ψ @ γ} , {V | ψ′ @ γ′} Sync

The rule Red says that stand-alone computations at individual nodes are part of a dis-
tributed computation. In the rule Sync, a node reference γ′ suspends the stand-alone
computation at node γ until it is replaced by a mobile value V through a synchroniza-
tion operation with node γ′. That is, node reference γ′ is not a value, but reduces to
a mobile value (which is globally valid) only after node γ′ has finished evaluating a
term. Note that a configuration reduction is non-deterministic because the rule Red can
choose an arbitrary node γ from a given configuration.
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4.2 Communication Construct for Remote Procedure Calls

The network operational semantics becomes interesting only with communication con-
structs; without communication constructs, all nodes perform stand-alone computations
independently of each other, and type safety holds trivially.

In designing communication constructs, we could begin with an existing modal logic,
such as S4 and S5, and adhere to a spatial interpretation of the modalities in it. Then
there arise a few logically motivated primitive operations, with which we can implement
various communication constructs. This approach is appealing because of the strong
logical foundation underlying communication constructs as well as the pleasant corre-
spondence between modal logic and distributed computations.

A strict adherence to a spatial interpretation of modal logic, however, sacrifices flex-
ibility in programming. For example, all previous work on modal languages for distrib-
uted computations [6,7,8] builds on the idea of using modal types �A for mobile terms
that may be evaluated at any node in the network, which is a typical spatial interpreta-
tion of the modality �. As modal types �A do not ensure the safety of mobile values
and safe communications are thus restricted to mobile terms, it is difficult to give a faith-
ful implementation of those communication constructs (such as remote procedure calls,
future constructs, and communication channels) that expect or return mobile values.

Since it is not concerned with “how” to transmit mobile values between nodes, the
modality � itself does not specify a principle for the design of communication con-
structs in λN

� . Instead we have to design each communication construct individually by
exploiting node references γ in conjunction with the rule Sync. We do not believe that
our approach is ad hoc, since not every communication construct can be given a log-
ical interpretation anyway (e.g., communication channels). In fact, even λrpc [7] and
Lambda 5 [8], both of which are based on a spatial interpretation of modal logic S5, in-
troduce primitive operations which are logically “motivated,” but do not actually have
their counterparts in S5.

As an illustration, we develop a communication construct for remote procedure calls.
We use the natural deduction style by giving introduction and elimination rules for it.
(Thus our communication construct is also logically motivated to a certain extent.) We
can use the same idea to develop similar communication constructs, such as future
constructs, that transmit both mobile terms and mobile values.

A remote procedure call transmits a mobile term M to a remote node γ to initiate
a stand-alone computation, and then waits for the result of evaluating M. In order to
ensure the safety of the remote procedure call, M needs to satisfy the following two
conditions:

– M itself is globally valid so that the evaluation of M at node γ is safe.
– M evaluates to a globally valid value so that the result of the remote procedure call

is valid.

We can test if M satisfies the two conditions by typechecking box box M:

– Typechecking the outer box construct tests if box M evaluates to a globally valid
value, in which case M is also globally valid because box M is already a value.

– Typechecking the inner box construct tests if M evaluates to a globally valid value.
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Thus, under typing contextsΔ andΓand store typingΨ , we have to proveΔ; · | · � M ∼ A:

Δ; · | · � M ∼ A
Δ; · | · � box M : �A �I

Δ;Γ | Ψ � box M ∼ �A
GVal

Δ;Γ | Ψ � box box M : ��A �I

We do not, however, use a term box box M of type ��A for a remote procedure call
because there is no way to tell whether such a term is intended for a remote procedure
call or just for creating a globally valid value. Instead we introduce a new modality �2

specifically designed for remote procedure calls. As far as the type system is concerned,
we may think of�2A as an abbreviation of��A. We use box2 M and letbox2 x = M in N
for the introduction and elimination rules for �2, respectively:

potentially global type G ::= · · · | �2 A
term M ::= · · · | box2 M | letbox2 x = M in M
value V ::= · · · | box2 M

Δ; · | · � M ∼ A

Δ;Γ | Ψ � box2 M : �2A
�2I

Δ;Γ | Ψ � M : �2A Δ, x ∼ A;Γ | Ψ � N : C

Δ;Γ | Ψ � letbox2 x = M in N : C
�2E

Δ;Γ | Ψ � M : �2A Δ, x ∼ A;Γ | Ψ � N ∼ C

Δ;Γ | Ψ � letbox2 x = M in N ∼ C
�2E

′

In the rules �2E and �2E
′, it helps to think of letbox2 x = M in N as

letbox x′ = M in letbox x = x′ in N where x′ is a fresh variable.
As for the operational semantics, �2A diverges from ��A. letbox2 x = M in N at

node γ expects M to evaluate to box2 M′; then it makes a remote procedure call by
starting an evaluation of M′ at a fresh node γ′ and replacing M′ by a node reference γ′.
When the remote procedure call returns a (globally valid) mobile value V , we replace
node reference γ′ by V , and then reduce letbox2 x = box2 V in N to [V/x]N.

letbox2 x = box2 V in M −→β [V/x]M

evaluation context φ ::= · · · | letbox2 x = φ in M | letbox2 x = box2 [] in M

M � γ′ fresh node reference γ′

π,
{
φ�letbox2 x = box2 M in N� | ψ@ γ

}
=⇒

π,
{
φ�letbox2 x = box2 γ′ in N� | ψ@ γ

}
, {M | ·@ γ′}

RPC

In the extended definition of evaluation contexts, an important restriction is that the
hole in letbox2 x = box2 [] in M can be filled only with a node reference. For example,
(letbox2 x = box2 [] in M)�γ� is allowed, but (letbox2 x = box2 [] in M)�N� is
not allowed. Without this restriction, letbox2 x = box2 N in M reduces to
letbox2 x = box2 N′ in M without making a remote procedure call, if N reduces to N′.
Note also that letbox2 x = box2 γ′ in M does not reduce to [γ′/x]M because node ref-
erence γ′ is not a value.

Independently of the modality �2, the modality � is still useful for creating argu-
ments to remote procedure calls. That is, we use � to compose mobile terms for remote
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procedure calls, and �2 to transmit them to remote nodes. For example, the following
term makes a remote procedure call to add two integers n1 and n2, both of which are
bound to variables x1 and x2 via letbox constructs:

letbox x1 = box n1 in letbox x2 = box n2 in letbox2 v = box2 x1 + x2 in v

4.3 Type Safety of λN
�

Type safety of λN
� consists of configuration progress (Theorem 9) and configuration

typing preservation (Theorem 11). Proofs of Theorems 9 and 11 use type safety for
stand-alone computations in λN

� (Theorems 8 and 10).

Theorem 8 (Progress). Suppose that term M satisfies ·; · | Ψ | Π � M : A or
·; · | Ψ | Π � M ∼ A for some store typing Ψ , configuration typing Π , and type A. Then
one of the following holds:

(1) M is a value,
(2) M = φ�γ�,
(3) M = φ�letbox2 x = box2 M′ in N�,
(4) for any store ψ such that Ψ | Π � ψ okay, there exist some term M′ and store ψ′

such that M | ψ −→ M′ | ψ′.
Theorem 9 (Configuration progress). Suppose Π � π okay. Then either:

(1) π consists only of
{V | ψ @ γ},
{φ�γ′� | ψ@ γ},{
φ�letbox2 x = box2 γ′ in N� | ψ @ γ

}
, or

(2) there exists π′ such that π =⇒ π′.
Theorem 10 (Type preservation)

Suppose

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ | Π � M : A
Ψ | Π � ψ okay
M | ψ −→ M′ | ψ′

.

Then there exists a store typing Ψ ′ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ ′ | Π � M′ : A
Ψ ⊂ Ψ ′
Ψ ′ | Π � ψ′ okay

.

Suppose

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ | Π � M ∼ A
Ψ | Π � ψ okay
M | ψ −→ M′ | ψ′

.

Then there exists a store typing Ψ ′ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
·; · | Ψ ′ | Π � M′ ∼ A
Ψ ⊂ Ψ ′
Ψ ′ | Π � ψ′ okay

.

Theorem 11 (Configuration typing preservation)

Suppose

{
Π � π okay
π =⇒ π′ .

Then there exists a configuration typing Π ′ such that

{
Π ⊂ Π ′
Π ′ � π′ okay

.
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Type safety of λN
� implies that mobile terms and mobile values are both safe to use: well-

typed terms never go wrong even in the presence of mobile terms and mobile values.

5 Related Work

Borghuis and Feijs [5] present a typed λ-calculus MTSN (Modal Type System for Net-
works) which assumes stationary services (i.e., stationary code) and mobile data. An
indexed modal type �ω(A → B) represents services transforming data of type A into
data of type B at node ω. MTSN is a task description language rather than a program-
ming language, since services are all “black boxes” whose inner workings are unknown.
For example, terms of type tex→ dvi all describe procedures to convert tex files to dvi
files. Thus reduction on terms is tantamount to simplifying procedures to achieve a cer-
tain task.

Jia and Walker [7] present a modal language λrpc which is based on hybrid logic [12]
as every typing judgment explicitly specifies the current node where typechecking takes
place. The modalities � and � are used for mobile terms that can be evaluated at any
node and at a certain node, respectively.

Murphy et al. [8] present a modal language Lambda 5 which addresses both code
mobility and resource locality. It is based on modal logic S5 where all judgments are
relativized to nodes, as in Simpson [13]. A value of type �A contains a mobile term
that can be evaluated at any node, and a value of type �A contains a label, a reference
to a local resource. A label may appear at remote nodes, but the type system guarantees
that it is dereferenced only at the node where it is valid.
λrpc and Lambda 5 are fundamentally different from λN

� in their use of modal types�A for remote procedure calls. In both languages, a remote procedure call, by the pull
construct in λrpc and by the fetch construct in Lambda 5, is given a specific node where
the evaluation is to occur, and therefore does not expect a term contained in a value
of type �A. Instead it expects just a term of type �A, which itself may not be mobile
but eventually produces a mobile term valid at any node including the caller node. The
resultant mobile term is delivered to (i.e., pulled or fetched by) the caller node, which
needs to further evaluate it to obtain a value. As such, both languages do not address
the issue of value mobility. In contrast, a remote procedure call in λN

� transmits a term
contained in a value of type�2A and relies on the modality�2 to directly return a mobile
value.

Moody [6] presents a system which is based on modal logic S4. The modality � is
used for mobile terms that can be evaluated at any node, and the modality � is used
for terms located at some node. As in λrpc and Lambda 5, remote procedure calls use
modal types �A to transmit mobile terms to unknown remote nodes. Moody’s system
uses the elimination rules for the modalities � and � to send mobile terms to remote
nodes, and does not provide a separate construct for remote procedure calls.

Liblit and Aiken [14] give a type-theoretic analysis of pointers in distributed com-
putations. Their type systems distinguish between global pointers (for global address
space) and local pointers (for local address space), and deal with safety and performance
issues with global pointer dereferencing. While the use of type qualifiers gives a power-
ful type inference system for minimizing the number of global pointers, their language
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focuses on distributed data rather than mobile code, and it is not obvious whether their
type systems can be extended to include mobile code.

6 Conclusion and Future Work

We present a modal language λN
� for distributed computations which ensure the safety of

both mobile terms and mobile values with a single modality �. The modality � is more
expressive than the necessity modality � from modal logic, and enables us to achieve
a more faithful implementation of common communication constructs. � is, however,
useful in λN

� only because the unit of communication includes values. That is, if the unit
of communication was just terms and did not include values, � would be enough and
� would be unnecessary.

A drawback of λN
� is that references to local resources cannot be transmitted to remote

nodes. As an example, consider a location l of type ref A at node γ. Node γ wishes to
share l among all its child nodes, e.g., those nodes created by remote procedure calls. No
child node, however, even knows the existence of l because references to local resources
cannot escape their host nodes.

To overcome this drawback, we are currently investigating another modality�which
is similar to the modality � of λrpc [7], but focuses on values rather than terms. The
idea is that term M in dia M of type �A evaluates to a value valid at a certain node
that is unknown to the type system but known to the runtime system. The modality �
makes it possible for mobile terms to contain references to remote resources, thereby
allowing more flexibility in programming for distributed computations.
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An Analysis for Proving Temporal Properties of

Biological Systems

Roberta Gori and Francesca Levi
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Abstract. This paper concerns the application of formal methods to
biological systems, modeled specifically in BioAmbients [34], a variant
of the Mobile Ambients [4] calculus. Following the semantic-based ap-
proach of abstract interpretation, we define a new static analysis that
computes an abstract transition system. Our analysis has two main ad-
vantages with respect to the analyses appearing in literature: (i) it is able
to address temporal properties which are more general than invariant
properties; (ii) it supports, by means of a particular labeling discipline,
the validation of systems where several copies of an ambient may appear.

1 Introduction

Nowadays one of the great challenges for computer science is to understand
whether models, originally developed for describing systems of interacting com-
ponents, can be applied for modeling and analyzing biological systems. This very
promising and recent application to systems biology could offer biologists very
useful simulation and verification tools that could replace expensive experiments
in vitro or guide the experiments by making predictions on their possible results.

Among the many formalisms that have been successfully applied to biology
there are traditional specification languages for concurrent and reactive systems
[25,20,19], and process calculi, designed for modeling distributed and mobile sys-
tems. Process calculi turned out to be very appropriate for describing both the
molecular and biochemical aspect, as pioneered by the application of stochas-
tic π-calculus [35,33]. New process calculi have also been proposed in order to
faithfully model biological structures such as compartments, membranes and
hierarchy, which play a key role in the organization of biomolecular systems.
Recent proposals are BioAmbients [34], Beta-Binders [32], and Brane calculi [2].

BioAmbients (BA) is a variant of a very popular calculus for mobile processes,
the Mobile Ambients calculus (MA)[4], based on the key concept of ambient. An
ambient represents a bounded location where computation happens; ambients
are organized into a hierarchy, that can be dynamically modified as a consequence
of an ambient movement or dissolution. For better modeling basic biological con-
cepts, minor modifications are introduced in BA with respect to standard MA.
Ambients are nameless; the primitive for opening is replaced by a primitive of
merge, which realizes the fusion of two ambients; capabilities have corresponding
co-capabilities; new primitives for communication and choice are introduced.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 234–252, 2006.
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A great advantage of the BA calculus is that the variety of formal verification
techniques, proposed for MA in the last few years, can be naturally adapted. In
particular, due to the intrinsic complexity of biological systems, static analysis
techniques appear very promising, and can be applied to infer information on
the possible behavior of biological systems that cannot be handled by simulation
tools [35,33] or by automatic verification techniques [23,24].

Static analyses define safe and computable approximations of the (run-time)
behavior of a system, and they have been typically applied in the MA setting (see
[27,18,14,21,15,26,11]) for verifying security properties, specifically for proving
invariant properties. To this aim, they collect information about the reachable
states by reporting approximate descriptions of the possible nesting of ambients
and processes. This information can be exploited to show that certain events
will not happen in each state of the system; for example, that an ambient will
never end up inside another one; and similarly, that an interaction between two
ambients will never take place.

As expected, some of these techniques [27,14,11,21,15] were successfully trans-
lated to the BA calculus (see [29,28,30,31,15]). Nonetheless, we believe that tempo-
ral properties, much more general than invariant properties, should be addressed
in order to reason on real biological systems. Examples of interesting temporal
properties could be: for each path of computation “after A interacts with B than
it does not interact with C anymore”; for each path of computation “ event A may
happen only after event B”. Such properties could help biologists to better under-
stand both the spatial and temporal evolution of complex biological systems, such
as pathways and networks of proteins, as already pointed out in [5,23,24,1].

As an example, we consider a typical specification of an enzymatic reaction,
following the approach proposed in [34] based on ambient movements,

[M ]mol | . . . | [M ]mol | [E]e . . . | [E]e (1)
M ::= inm. outn.P E ::= recY . inm. outn.Y

The system (1) describes an (irreversible) enzymatic reaction; the enzyme and
its substrate are modeled by ambients, labeled1 e and mol, resp.. Processes
M and E realize the reaction in this way: the binding is modeled as entry of
the substrate ambient inside the enzyme ambient; symmetrically, the release of
product P is modeled as ambient exit.

In the reaction described in (1), for any ambient mol, the binding with an
ambient e is a necessary for the release of product P . Even this very simple
property, however, cannot be captured by standard reachability analyses for BA
/ MA [27,18,11,14,21,29,28,30,31]. In fact, these proposals predict the possible
contents of ambients, at any evolution step, and can just conclude that any
ambient mol may reside both at top-level and inside an ambient e. In order to
infer that the former event is a so called necessary check-point for the latter,
information about the possible moves of the system is needed.

It is clear that the validation of such properties requires more powerful anal-
yses able to observe the possible evolution of a system , i.e., to compute an
1 In BA labels are attached to ambients as comments, in that ambients are nameless.
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approximation of the transition system. However, the approaches proposed in lit-
erature, specifically [27,18,11,21,29,28,30,31], would be not adequate for deriving
an abstract transition system relevant for typical biological systems. This is be-
cause they do not support techniques for accurately handling systems where mul-
tiple occurrences of objects, e.g. ambients and capabilities, may appear. Based
on the previous motivations we propose a new analysis for BA following the ab-
stract interpretation [7,8] approach, specifically by refining the approach of [21].
More in details, we enhance the structure of the abstract states, then we derive
an abstract transition system (by abstracting each transition step).

First of all, we introduce occurrence counting information in the style of the
reachability analysis of [16], which records in the abstract states information
about the number of occurrences of ambients and capabilities that may appear
in any location. Note that this idea is not completely new (see [26,13,15]), while
in [21,18] a less precise information is tracked since the number of objects, which
may occur in the whole system, is taken into account. Occurrence counting infor-
mation is essential for reasoning about the firing of capabilities and for achieving
detailed information about the possible sequences of moves (which are very im-
portant for establishing temporal properties such as check-points). For example,
in the case of system (1) it is necessary for distinguishing process E, model-
ing the expected behavior of the enzyme, from an anomalous process such as
E ::= recY . (inm. outn.Y | inm); in this case indeed the enzyme may bind
with two distinct molecules, at the time.

Moreover, for handling systems, such as (1), where multiple occurrences of
ambients appear we adopt a special labeling discipline for ambients, both in
the concrete and in the abstract semantics. Labels are profitably exploited for
distinguishing different occurrences of ambients, and for establishing temporal
properties which hold for all the copies of an ambient appearing in a system. This
feature is relevant in the context of biological systems, which typically contain
hundred of copies of a given protein.

Our abstract transition system is a safe over-approximation in the sense of
[6,10], and thus preserves the properties of a fragment of CTL, ∀-CTL with-
out eventually. In this paper, however, we focus on the validation of systems
where multiple occurrences of ambients may appear (such as (1)), for which the
standard interpretation of ∀-CTL seems not adequate. Hence, in the complete
version of this paper [17] we introduce a simple class of temporal properties
and corresponding validation methods (both in the concrete and in the abstract
case) which exploit the labels of ambients in order to deal with multiple copies of
ambients. The logic supports the specification of interesting temporal properties
of pathways (including check-points) which hold precisely for any occurrence of
an ambient; for example in (1) for any copy of ambient mol.

For a lack of of space, we omit the formal definition of the temporal logic,
and we describe in an informal way the validation of the check-point property
for system (1). We refer the reader to [17] also for more complex and interesting
examples and properties.
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2 Syntax and Semantics

For a lack of space, we consider a simplified version of BA [34] without commu-
nication primitives; the analysis can easily be extended to the full calculus.

In the style of [27,11,21] we adopt labels and we treat α-conversion in a par-
ticular way, based on a given partition of names. In particular, we consider a
set N (ranged over by n,m, h, k, . . .) of channel names such that N = 3iNi,
i ∈ {1, . . . , ω}, where 3 denotes disjoint union and each Ni is an infinite set. We
also consider an infinite set of recursion variables V (ranged over by X,Y, Z, . . .).
For ambients, we consider an infinite set of ambients names Na (ranged over by
a, b, c, . . .), such that Na ∩ N = ∅ and % ∈ Na, where % is a distinct sym-
bol used to denote the outermost ambient. Moreover, we consider an infinite
set L̂ of run-time labels (ranged over by Ψ, Γ,Δ, . . .), and of ambients labels
La = {(a, Ψ) | a ∈ Na and Ψ ∈ L̂} (ranged over by A,B . . .). An ambient label
A = (a, Ψ) shows the name of the ambient a (denoted by (A)1 using the standard
notation for projection) and the run-time label of the ambient Ψ (denoted by
(A)2).

The syntax of (labeled) processes is defined in Table 1. The constructs for
inactivity, parallel composition, restriction are standard. Operator recX .P de-
fines a recursive process (which is more convenient than standard replication !P ).
Specific to the ambient calculi, are the ambient construct, [P ]A, the capability
prefix M .P , where M is an action or co-action2, and the derived capability choice
primitive Σi∈IMi.Pi. Specifically, process [P ]A defines an ambient (labeled) A
where process P runs.

For processes we adopt standard syntactical conventions. We often omit the
trailing 0, and we assume that parallel composition has the least syntactic prece-
dence. The operator (νn)P acts as static binder for channel name n, and defines
the standard notions of free and bound names of a process; similarly, recX .P
is a binder for X with scope P . In the following, we consider only processes that
are closed on recursion variables, e.g. they have no free recursion variables. As
usual, we also identify processes which are α-convertible, meaning that they can
be made syntactically equals by a change of bound names. In the style of [11,21]
we, however, discipline α-conversion by assuming that a bound name m can be
replaced only with a name n provided that n,m ∈ Ni.

We stress that labels are introduced for the specification of the analysis, and
do not modify the standard behavior of processes. Specifically, they are designed
for handling systems where multiple occurrences of ambients may appear, and
for proving temporal properties for any occurrence of an ambient. In this sense,
given an ambient labeled (a, Ψ): the name a is shared by all the occurrences;
by contrast, the run-time label Ψ is used for distinguishing the occurrences of
ambients named a. For these purposes, it is necessary to consider well-labeled
processes, where ambients related to the same name are distinguished by means
of distinct run-time labels.

2 For coactions the notation of Safe Ambients [22] is used in place of the standard one.
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Table 1. BioAmbients Processes and Reduction Rules

M,N::= (capabilities)
inn enter
inn co-enter
outn exit
outn co-exit
mergen merge
mergen co-merge

P,Q::= (processes)
0 inactivity
(νn) P restriction
P | Q parallel composition
X recursion variable
recX.P recursive process
[P ]A ambient
M .P capability prefix
Σi∈IMi.Pi capability choice

[+inm.P | Q]A | [+inm.R | S]B →∅ [[P | Q]A | R | S]B (In)

[[+outm.P | Q]A | +outmR | S]B →∅ [P | Q]A | [R | S]B (Out)

[+mergem.P | Q]A | [+mergem.R | S]B →∅ [P | Q | R | S]A (Merge)

(L = La(Pη) La(P ) ∩ L = ∅)⇒ recX.P →L P [recX.Pη/X] (Rec)

P →L Q⇒ (νn) P →L (νn)Q (Res)

(La(R) ∩ La(Qη) = ∅ dom(η) = L P →L Q)⇒ P | R→η(L) Qη | R (Par)

(P →L Q A �∈ La(Qη) dom(η) = L)⇒ [P ]A →η(L) [Qη]A (Amb)

(P ′ →L Q′ P ≡ P ′ Q′ ≡ Q)⇒ P →L Q (Cong)

Definition 1 (Well-labeled). A process P is well-labeled iff whenever two
ambients [Q]A and [R]B appear, such that (A)1 = (B)1, then (A)2 �= (B)2.

In the following, we use La(P ) and Na(P ) for denoting the set of the ambients
labels and names appearing in process P , resp.. We also adopt a standard notion
of relabeling, by using injective functions η : La → La, such that for each A ∈
dom(η), (A)1 = (η(A))1 (this guarantees that the name of an ambient is not
modified). We also use Pη for the application of η to process P .

Reduction Semantics. The semantics of BA is given in the form of a reduction
relation. Minor modifications are needed with respect to the standard definition
[34] for preserving the condition of well-labeling; specifically, for handling the
new copies of ambients (related to a given name) which may be produced, by
the unfolding of recursion. A very simple labeling discipline is used: each ambient
maintains its label, as the computation proceeds, and the new copies of ambients
introduced by the move are relabeled with fresh labels (in particular run-time
labels).

Formally, this is realized (see the rules of Table 1) by considering reduction
arrows →L , where L ⊆ La is the set of fresh ambients labels, introduced by
the move. The reduction axioms (In), (Out) and (Merge) model the movement
of an ambient, in or out, of another ambient and the merge of two ambients.
They differ from those of MA mainly because ambients are nameless, because
actions have corresponding coactions and because the primitive merge replaces
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the standard primitive of opening. For compacting the presentation, we adopt
a special notation for capability prefix and capability choice, by writing +M .P
both for M .P and for Σi∈IMi.Qi, where M = Mi and P = Qi for i ∈ I.

Moreover, the unfolding of recursion is modeled as a reduction rule, e.g. (Rec).
Here a relabeled version of the recursive process, e.g. recX .Pη, is introduced,
and the information about the fresh labels La(Pη) is recorded accordingly. The
inference rules (Res), (Par), (Amb) and (Cong) are standard; they handle re-
ductions in contexts and permit to apply structural congruence, e.g. relation ≡.
Structural congruence is defined in a standard way (we therefore refer the reader
to [34]). Notice that, in case of (Par) and (Amb), the fresh labels are updated
(if needed) in order to guarantee well-labeling.

In the following, we say that a process P is active if either P = Σi∈IMi.Qi,
P = M .Q or P = recX .P . Moreover, we use P and AP to denote the set of
(well-labeled) processes and active processes, resp.. We also say that a context
C is enabling whenever the hole does not appear under a capability prefix or
a recursion; also we say that an ambient, labeled A, is enabled in P whenever
P ≡ C[[Q]A] for some enabling context C. With amb(P ), amb(P, a) ⊆ La we
denote the labels of the ambients and of the ambients named a, that are enabled
in process P .

The transition system. Let T = {P → P ′ | P, P ′ ∈ P} be the set of tran-
sitions, and, let Ts = {(Ss, Ss0, T s) | Ss, Ss0 ∈ ℘(P), and Ts ∈ ℘(T )} be the
set of transition systems3. The concrete domain is A = 〈Ts,⊆〉, where ⊆ is de-
fined component-wise. Given P ∈ P , we define S[[P ]], as the transition system
obtained from the initial process P by considering the transitive closure of the
→ reduction relation.

3 The Abstraction

The analysis computes an abstract transition system,which is derived, by abstract-
ing processes into abstract states and reduction steps into abstract transitions. The
abstract domain includes a notion of ordering, expressing precision of approxima-
tions, and is related to the concrete one through a Galois connection [7,8].

The abstraction is parametric with respect to the choice of abstract names
and labels. Given an abstract partition of channel names N , N = 3iN ◦

i , i ∈
{1, . . . , h}, such that, for each n,m ∈ Ni we have n,m ∈ N ◦

j , we consider abstract
channel names N ◦ = N/∼= where ∼= is the corresponding equivalence relation.
Analogously, we consider abstract ambient names Na

◦ = Na/∼= by adopting an
equivalence relation ∼= over Na. We also consider an infinite set of run-time labels
L̂◦ = L̂ ∪ {∞} (ranged over by Ψ,Δ, . . .), and we define the abstract ambients
labels La

◦ = {(a◦, Ψ) | a◦ ∈ Na
◦ and Ψ ∈ L̂◦}.

In the following, we consider also abstract processes which are obtained by
replacing standard names and labels with their abstract versions; we also use P◦

3 The usual notion is generalized by allowing sets of initial states; also we remove the
information about the fresh labels related to a reduction step.
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and AP◦ for denoting the set of abstract and active abstract processes, resp..
According to the notation for meta-variables of Section 2, we use −◦ to denote
the abstraction of a label, name or process −.

It is worth stressing that the abstract ambients labels L̂◦ are infinite (in that
there is no a priori abstraction of run-time labels). In the concrete semantics
distinct run-time labels are used precisely to distinguish the occurrences of am-
bients with the same name. Since the concrete labeling discipline is obviously
not effective (e.g. infinite run-time labels may be generated), here we adopt a
different approach and we define a framework where: (i) the run-time labels can
be approximated, by merging together the information related to distinct run-
time labels; (ii) the run-time labels of ambients may vary, as the computation
proceeds (provided that the information is properly recorded in the correspond-
ing abstract transition). In the analysis we apply these concepts in order to
implement a particular labeling discipline which guarantees that, for any ab-
stract ambient name a◦ ∈ Na

◦, at most maxa◦ distinct run-time labels L̂◦ can
be generated. The bound imposed by parameter maxa◦ is guaranteed by means
of the special run-time label ∞.

Abstract states. Abstract states are designed to represent approximate infor-
mation about processes. In the style of [16] an abstract state reports: (i) the
abstract labels of the ambients that may appear; and (ii) for each one of them,
a set of configurations describing the possible contents of the related ambients.
In details, a configuration contains both the abstract labels of the ambients and
the active abstract processes which may appear at top-level, and the number of
their occurrences. For representing occurrence counting information, we adopt
M ={0, 1, [0− ω], [1− ω]}. Each m ∈ M denotes a multiplicity: 0 and 1 indicate
zero and exactly one, resp.; the intervals [1−ω] and [0−ω] indicate at least one
and zero or more, resp..

Example 1. We consider the following process,

[M ](mol,Ψ1) | . . . | [M ](mol,Ψh−1) | [E](e,Δ1) | . . . | [E](e,Δk−1) |
[outn.E | [outn.P ](mol,Ψh)](e,Δk)

which is derived from a (well-labeled) version of the system (1) described in the
Introduction, after an ambient named mol (with run-time label Ψh) has moved
inside an ambient named e (with run-time label Δk).

We assume here that the abstract names and ambient names are defined by
the equivalence classes N ◦ = {n,m}, and N ◦

a = Na. The following abstract
states define safe approximations of the previous process,

S◦
1,1 ={(), C◦

0,1)}
⋃

i∈{1,...,h−1}{(D
◦
i, C

◦
1,1)}

⋃
i∈{1,...,k−1}{(F

◦
i , C

◦
2,1), (D

◦
h, C

◦
1,2), (F

◦
k, C

◦
2,2)}

C◦
0,1 ={(D◦

1 , 1), . . . , (D
◦
h−1, 1), (F

◦
1 , 1), . . . , (F

◦
k , 1)} C◦

1,1 = {(M◦, 1)} C◦
2,1 = {(E◦, 1)}

E◦ ::= recY . inm◦. outm◦.Y M◦ ::= inm◦. outm◦.P ◦

C◦
1,2 = {(outm◦.P ◦, 1)} C◦

2,2 = {(outm◦.E◦, 1), (D◦
h, 1)}

S◦
1,2 = {(), C◦

0,2), (A
◦
1, C

◦
1,1), (B

◦
1 , C

◦
2,1), (A

◦
2, C

◦
1,2), (B

◦
2 , C

◦
2,3)}

C◦
0,2 = {(A◦

1, [1− ω]), (B◦
1 , [1− ω]), (B◦

2 , 1)} C◦
2,3 = {(outm◦.E◦, 1), (A◦

2, 1)}
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S◦
1,3 = {(), C◦

0,3), (A
◦
3, C

◦
1,1), (A

◦
3, C

◦
1,2), (B

◦
3 , C

◦
2,1), (B

◦
3 , C

◦
2,4)}

C◦
0,3 = {(A◦

3, [1− ω]), (B◦
3 , [1− ω])} C◦

2,4 = {(outm◦.E◦, 1), (A◦
3, 1)}

S◦
1,4 = {(), C◦

0,3), (A
◦
3, C

◦
1 ), (B◦

3 , C
◦
2 )} C◦

1 = {(outm◦.P ◦, [0− ω]), (M◦, [0− ω])}
C◦

2 = {(outm◦.E◦, [0− ω]), (A◦
3, [0− ω]), (E◦, [0− ω])}

State S◦
1,1 is the best approximation and does not introduce any approxi-

mation on ambient labels (to simplify the presentation we use % = (%, Λ),
D◦

i = (mol, Ψi) and F ◦
i = (e,Δi)). In particular, configuration C◦

0,1 for the spe-
cial symbol % reports information about the processes running at top-level; it
reveals the presence of exactly one ambient labeled D◦

i , with i ∈ {1, h− 1}, and
labeled F ◦

i with i ∈ {1, k}. Configuration C◦
1,1 describes the ambients named

mol and labeled D◦
i for i ∈ {1, h − 1}, showing that they contain exactly one

process abstracted by M◦. By contrast, configuration C◦
1,2 describes the ambi-

ent named mol and labeled D◦
h, i.e., the ambient mol residing inside ambient

e. It shows that it contains exactly one process abstracted by outm◦.P ◦. Anal-
ogously, the configurations C◦

2,1 and C◦
2,2 describe the possible contents of the

ambients named e. In particular, configuration C◦
2,2 describes the occurrence la-

beled F ◦
k , which contains exactly one ambient named mol and labeled D◦

h, and
a process outm◦.E◦.

The states S◦
1,2, S

◦
1,3, S

◦
1,3 describe safe approximations of state S◦

1,1 and illus-
trate the approximation of ambients labels. Intuitively, distinct run-time labels,
related to the same name, can be represented by a single abstract label, provided
that coherent information about the corresponding configurations and multiplic-
ities is reported.

As an example, in state S◦
1,2 the labels are approximated by using a sim-

ple partitioning criteria: the occurrences of ambients with the same name, de-
scribed by the same configuration, are identified (by adopting abstract labels
A◦

i = (mol, Λi) and B◦
i = (e, Φi)). More in details, the labels D◦

1 , . . . , D
◦
h−1, for

name mol, are represented by label A◦
1, while label D◦

h is represented by A◦
2;

analogously, the labels F ◦
1 , . . . , F

◦
k−1, for name e, are represented by label B◦

1 ,
and label F ◦

k is represented by B◦
2 . The related configurations are updated by

modifying the multiplicities accordingly; for example configuration C◦
0,2 shows

that [1 − ω] ambients labeled A◦
1 and B◦

1 , and exactly one ambient labeled B◦
2

may appear at top-level.
Notice that label A◦

1 describes all the occurrences of mol, which are running at
top-level and are described by configuration C◦

1,1; instead, label A◦
2 identifies the

occurrence of mol, residing inside the enzyme and is described by configuration
C◦

1,2. Notice that the interpretation of configuration C◦
1,1 is that, any ambient

named mol labeled A◦
1 contains exactly one process abstracted by M◦. In this

sense, the counting of occurrences is local, being [1 − ω] the global number of
occurrences of processes M◦.

State S◦
1,3 introduces a further approximation, where all occurrences of am-

bients (named) mol and e are represented by the same abstract labels A◦
3

and B◦
3 , resp. Labels A◦

3 and B◦
3 , however, are related to a set of configura-

tions; for example, A◦
3 for mol is related to configurations C◦

1,1 and C◦
1,2. The
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Table 2. Occurrence Counting

[0−ω]

[1−ω]

1 0

⊥

+◦ 0 1 [1− ω] [0− ω]

0 0 1 [1− ω] [0− ω]

1 1 [1− ω] [1− ω] [1− ω]

[1− ω] [1− ω] [1− ω] [1− ω] [1− ω]

[0− ω] [0− ω] [1− ω] [1− ω] [0− ω]

−◦ 1

0 0

1 0

[1− ω] [0− ω]

[0− ω] [0− ω]

interpretation is that the contents of any ambient mol may be described either
by C◦

1,1 or by C◦
1,2.

Finally, in state S◦
1,4 the configurations of a given label are merged into a

single one, e.g. configuration C◦
1 for ambients mol and C◦

2 for ambients e. The
loss of precision is clear; for example, configuration C◦

1 says that any ambient
mol may contain, at the same time, process outm◦.P ◦ and process M◦. �

Let P̂L = La
◦ ∪ AP◦ (ranged over by e) be the set of abstract ambients labels

and abstract active processes, and let E = P̂L ×M.

Definition 2 (Configurations and Abstract States). A configuration C is
a subset of E such that: (i) if (e, m), (e, m′) ∈ C◦, then m = m′; and (ii) for each
(e, m) ∈ C◦, m �= 0. An abstract state S◦ is a set of pairs (A◦, C◦), where C◦ is
a configuration and A◦ ∈ La

◦ is an ambient label.

In the following, we use S◦ and C◦ for the set of abstract states and configu-
rations, resp. Given S ∈ S◦, we also use amb(S◦) = {A◦ | (A◦, C◦) ∈ S◦} and
amb(S◦, a◦) = {A◦ | (A◦, C◦) ∈ S◦, (A◦)1 = a◦} for denoting the ambients labels
described by a configuration. Notice that in configurations, no pair (e, 0) can ap-
pear, recording explicitly that there are no occurrences of element e. However,
we may write (e, 0) ∈ C◦ in place of (e, m) �∈ C◦ for any m ∈ M for convenience.

In order to define the information order on abstract states, we assume that the
domain M of multiplicity comes equipped with the expected (information) order
≤m and with the set of operations +◦ and −◦, reported in Table 2. Moreover, we
introduce for configurations a derived ordering and an operator ∪+ that realizes
their union,

1. C◦
1 ≤c C◦

2 iff, for each (e, m) ∈ C◦
1 there exists (e, m′) ∈ C◦

2 such that m ≤m m′;
2. C◦

1 ∪+ C◦
2 = {(e, m) | (e, mi) ∈ C◦

i , for each i ∈ {1, 2}, m = m1+◦m2}.
The ordering over states is rather complex due to the possible approximation

of run-time labels (as illustrated in Ex. 1). For merging ambients labels we adopt
approximation functions σ : La

◦ → La
◦, such that for any A◦ ∈ dom(σ), (A◦)1 =

(σ(A◦))1. The application of an approximation function to a configuration is
defined as follows, C◦σ =

⋃+
{(e,m)∈C◦}{(eσ, m)}.

Definition 3 (Order on States). Let S◦
1 , S

◦
2 ∈ S◦ and σ be an approxima-

tion function. We say that S◦
1 �σ S◦

2 iff, for each (A◦, C◦
1 ) ∈ S◦

1 , there exists
(σ(A◦), C◦

2 ) ∈ S◦
2 such that C◦

1σ ≤c C◦
2 . Moreover, we say that S◦

1⊆◦S◦
2 iff there

exists an approximation function σ such that S◦
1 �σ S◦

2 .
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Table 3. Abstract Translation Function

DRes◦ η◦((νn◦)P ◦) = η◦(P ◦)
DAmb◦ η◦([P ◦]A

◦
) = ({(A◦, 1)}, δ◦(A◦, P ◦))

DZero◦ η◦(0) = (∅, ∅)
DPar◦ η◦(P1 | P2) = (C1

◦ ∪+ C2
◦, S1

◦∪◦S2
◦) η◦(Pi) = (C◦

i , S
◦
i ) for i ∈ {1, 2}

DRec◦ η◦(recX.P ◦) = ({(recX.P ◦, 1)}, ∅)
DPref◦ η◦(M .P ◦) = ({(M .P ◦, 1)}, ∅)
DSum◦ η◦(Σi∈IM

◦
i .P ◦

i ) = ({(Σi∈IM
◦
i .P ◦

i , 1)}, ∅)

Abstract Transition Systems. The abstract labeling disciple requires the
possibility that the labels (specifically the run-time labels) of ambients can vary,
as the computation proceeds. For tracking the possible evolution of the run-time
labels, we expand the information reported by standard transitions, by exploiting
evolution relations R◦ ⊆ (La

◦∪{⊥})× (La
◦∪{⊥}), such that for each A◦ ∈ L◦

a,
if (A◦, B◦) ∈ R◦, (A◦)1 = (B◦)1. Intuitively, (A◦, B◦) ∈ R◦ says that label A◦

has been replaced by label B◦; (A◦,⊥) ∈ R◦ says that all the ambients labeled
A◦ disappear; (⊥, A◦) ∈ R◦ says that A◦ is the label of a new enabled ambient.

Hence, we consider abstract transitions T ◦ = {S◦
1 �→◦

R◦S◦
2 | S◦

1 , S
◦
2 ∈ S◦ and

dom(R◦) = amb(S◦
1 ) and cod(R◦) = amb(S◦

2 )}. In the ordering on transitions we
guarantee by means of approximation functions that: (i) the source and target
state are approximated; (ii) the approximation over states is consistent with the
information reported by the corresponding evolution relations.

Definition 4 (Order on Transitions). Let S◦
1,1 �→◦

R1
◦S◦

1,2, S
◦
2,1 �→◦

R2
◦S◦

2,2 ∈
T ◦, and σ1, σ2 be approximation functions. We say that S◦

1,1 �→◦
R1

◦S◦
1,2 �(σ1,σ2)

S◦
2,1 �→◦

R2
◦S◦

2,2 iff: (1) S◦
1,1 �σ1 S◦

2,1 and S◦
1,2 �σ2 S◦

2,2; (2) for each A◦ ∈
amb(S◦

1,1): (i) if R1
◦(A◦) = ⊥, then R2

◦(σ1(A◦)) = ⊥; or (ii) σ2(R1
◦(A◦)) ⊆

R2
◦(σ1(A◦)); and σ2(R1

◦(⊥)) ⊆ R2
◦(⊥).

Based on Def. 3 and 4 it is immediate to derive a corresponding order ⊆◦ on
abstract transition systems Ts◦ = {(Ss◦, S◦

0 , T s
◦) | Ss◦ ∈ ℘(S◦), S◦

0 ∈ S◦ and
Ts◦ ∈ ℘(T ◦)}. Consequently, we define the abstract domain A◦ = (Ts◦,⊆◦).

Galois Connection. A Galois connection formalizes the notion of safe approx-
imation of an abstract transition system, e.g the relation between the concrete
and the abstract domain.

First of all, we define the abstraction of a process, by introducing a translation
function that given the label of the enclosing ambient, reports the most precise
abstract state, e.g. its best approximation. Formally, we define δ◦ : (La

◦×P◦) →
S◦ as follows

δ◦(A◦, P ◦) = {(A◦, C◦)} ∪ S◦ where η◦(P ◦) = (C◦, S◦).

The auxiliary function function η◦ : P◦ → (C◦×S◦) is reported in Table 3 and
computes: (i) an abstract configuration C◦ reporting both the active processes
and the labels of the ambients occurring at top-level, and their multiplicities;
(ii) an abstract state S◦ describing the internal ambients. In the following we
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use α◦(P ) for denoting the best approximation of process P with respect to the
enclosing ambient %, e.g. α◦(P ) = δ◦(%, P ◦).

Analogously, we introduce the abstraction of concrete transitions, e.g. P → P ′.
For this, we define an evolution relation R◦, expressing how the labels of the
enabled ambients (specifically their run-time labels) vary.

Given P → P ′ ∈ T , we define4 α◦(P → P ′) = α◦(P )�→◦
R◦α◦(P ′) where

R◦ = id(amb(P )∩amb(P ′))∪ ({⊥}, amb(P ′)\amb(P ))∪ (amb(P )\amb(P ′), {⊥}),
using (L,L′) = {(A,B) | A ∈ L, B ∈ L′} and id(L) = (L,L), for L,L′ ⊆ La.

Relation R reflects the concrete labeling discipline; no pair (A,B) with A �=
B could actually appear given that all the ambients maintain their labels; by
contrast, R records the labels of the new enabled ambients.

The following abstraction and concretization functions between the concrete
and abstract domain are derived in the obvious way.

Definition 5. Let Ss, Ss0 ∈ ℘(P), Ss◦ ∈ ℘(S◦), S◦
0 ∈ S◦, Ts ∈ ℘(T )

and Ts◦ ∈ ℘(T ◦). We define α◦ : A → A◦ and γ◦ : A◦ → A, where
α◦((Ss, Ss0, T s))=(

⋃
P∈Ss{α◦(P )},∪P∈Ss0{α◦(P )},

⋃
P1→P2∈Ts{α◦(P1→P2)};

γ◦((Ss◦, S◦
0 , T s

◦)) = (
⋃

{P |{α◦(P )}⊆◦Ss◦}{P},
⋃

{P |{α◦(P )}⊆◦S◦
0}{P},⋃

{P1→P2|{α◦(P1→P2)}⊆◦Ts◦}{P1 → P2}).

Theorem 1. The pair (α◦,γ◦) is a Galois connection between 〈A,⊆〉 and 〈A◦,⊆◦〉.
Abstract semantics. The analysis defines abstract transitions which approx-
imate the unfolding of recursion, the movements of ambients, in and out, and
the merge of two ambients. The most critical part (w.r.t the similar proposals
in [21,16]) concerns the treatment of ambients labels. Our labeling discipline is
based on the idea of using a one-to-one correspondence between labels and con-
figurations; meaning that the same abstract label is used to represent ambients
with the same name that exhibit the same behavior (e.g. which are described by
the same configuration). In order to reduce the complexity, however, we use, for
each ambient name a◦, at most maxa◦ distinct run-time labels. Whenever more
than maxa◦ labels are needed, we approximate by describing all the occurrences
related to name a◦ and their configurations by means of the special label (a◦,∞).

For implementing the labeling discipline we introduce normalized states and
a related notion of normalization, by means of approximation functions.

Definition 6 (Normalized States). A state S◦ ∈ S◦ is normalized iff, for
each a◦ ∈ N ◦

a , and A◦, B◦ ∈ amb(S◦, a◦),
1. if (A◦, C◦

1 ), (B◦, C◦
1 ) ∈ S◦, then A◦ = B◦;

2. if (A◦, C◦
1 ), (B◦, C◦

2 ) ∈ S◦ then (B◦)2 = (A◦)2 implies (B◦)2 = (A◦)2 = ∞;
3. either amb(S◦, a◦) = {(a◦,∞)} or amb(S◦, a◦) = {(a◦, Φi)}i∈{1,...,n}, where

n ≤ maxa◦ .
Conditions (1) and (2) impose, for each ambient name a◦, a one-to-one corre-
spondence between configurations and run-time labels different from ∞; condi-
tion (3) explains the meaning of parameter maxa◦ . In this way, in a normalized
4 R◦ is obtained from R by replacing the ambient labels by their abstract versions.
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state: either at most n (with n ≤ maxa◦) distinct run-time labels Φi appear,
each related to a different configuration, or the special label ∞ describes all the
copies and a set of configurations.

Definition 7 (Normalization). An approximation function σ is a normaliza-
tion for a state S◦ iff S◦σ5 is a normalized state. Moreover, σ is a minimal
normalization for S◦ iff, for each normalization σ′ for S◦, S◦σ⊆◦S◦σ′. We also
use M(S◦) to denote the set of minimal normalizations for S◦.

The transition rules are reported in Table 4 and use the following auxiliary
notions. For simplicity we use new(A◦) to generate a fresh label with the same
name of A◦, e.g. (new(A◦))1 = (A◦)1. Moreover, we introduce operators: over
configurations for removing one occurrence of an object e (and similarly for a set
of objects); and, over states for replacing a pair (A◦, C◦) with a pair (A◦

1, C
◦
1 ) such

that (A◦
1)1 = (A◦)1. In the definition, we adopt OS◦(e) reporting the (global)

number of occurrences of object e in the abstract state S◦,

C◦\◦e = C◦ \ {(e, m)} ∪ {(e, m−◦1)} C◦\◦PL◦ = C◦\◦e∈PL◦e.

S◦[(A
◦
1 ,C◦

1 )/(A◦,C◦)] =

{
(S◦[A

◦
1/A◦ ]) \ {(A◦, C◦)} ∪ {(A◦

1, C
◦
1 )} if OS◦(A◦) = 1

(S◦[A
◦
1/A◦ ]) ∪ {(A◦

1, C
◦
1 )} otherwise

S◦[A
◦
1/A◦ ]=

⋃
(D◦,C◦)∈S◦(D

◦, C◦
1 ), where C◦

1 =

{
(C◦\◦A◦) ∪+ (A◦

1, 1) if (A◦,m) ∈ C◦

C◦ otherwise

As expected the effect of the operators depends on the multiplicity of the objects;
for example, the pair (A◦, C◦) is not removed whenever more than one occurrence
of A◦ appears.

The rules Rec◦, In◦, Out◦, Merge◦ are similar. As an example, we comment
In◦, which models the movement of an ambient labeled A1

◦ inside an ambient
labeled A2

◦. It can be applied whenever they may be siblings, meaning that
they may reside, at the same time, inside an ambient (labeled A3

◦) and that
they offer the right action or coaction. Formally: (i) a configuration C◦

3 for A3
◦

contains both A1
◦ and A2

◦; (ii) configurations C1
◦ and C2

◦ for A1
◦ and A2

◦

contain capabilities inM◦ and inM◦, resp..
The rule is based on the following intuition: (1) we generate fresh labels for

describing the instance of ambients labeled A◦
1, A

◦
2 A◦

3 involved in the movement
(e.g. new(A◦

i ) for i ∈ {1, 2, 3}); (2) we design new configurations representing the
variation of their contents, due to the movement. In particular,

1. C◦
1,1 describes the local process of ambient new(A◦

1); it is obtained from con-
figuration C◦

1 , by adding the translation of the continuation and by removing
the executed process (according to their multiplicities);

2. C◦
2,1 describes the contents of ambient new(A◦

2) similarly as in case 1, in
addition an ambient new(A◦

1) is introduced in C◦
2 ;

3. C◦
3,1 describes the contents of ambient new(A◦

3); it is obtained from C◦
3 taking

into account that an ambient A◦
1 has moved into another location.

5 With an abuse of notation S◦σ = {((σ(A◦), C◦σ) | (A◦, C◦) ∈ S◦}.
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Table 4. Abstract Transitions

Rec◦ (A◦, C◦) ∈ S◦ (T ◦, m) ∈ C◦ T ◦ = recX.P ◦

S◦ �→◦
R◦σS

◦
0σ

S◦
1 = S◦[(new(A

◦),C◦
1 )/(A◦,C◦)]

C◦
1 = (C◦\◦T ◦) ∪+ C◦

2 η◦(P ◦[T ◦/X]) = (C◦
2 , S

◦
2 ) R◦ = R◦

1 ∪ {(A◦, new(A◦)))}

In◦

(A◦
1, C

◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +inm◦.P ◦

(A◦
2, C

◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +inm◦.Q◦

(A◦
3, C

◦
3 ) ∈ S◦ (A◦

1, m3), (A
◦
2, m4) ∈ C◦

3 A◦
1 = A◦

2 → m3 = m4 >m 1

S◦ �→◦
R◦σS

◦
0σ

S◦
1 = S◦[(new(A

◦
i ),C◦

i,1)/(A◦
i ,C◦

i )]i∈{1,2,3} S◦
2 = S◦

1,2 ∪ S◦
2,2

C◦
1,1 = (C◦

1\◦T ◦) ∪+ C◦
1,2 η◦(P ◦) = (C◦

1,2, S
◦
1,2)

C◦
3,1 = C◦

3\◦{A◦
1} C◦

2,1 = (C◦
2\◦T ′◦) ∪+ C◦

2,2 ∪+ {(new(A◦
1), 1)}

η◦(Q◦) = (C◦
2,2, S

◦
2,2) R◦ = R◦

1 ∪ {(A◦
i , new(A

◦
i ))}i∈{1,2,3}

Out◦

(A◦
1, C

◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +outm◦P ◦

(A◦
2, C

◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +outm◦.Q◦ (A◦
1, m3) ∈ C◦

2

(A◦
3, C

◦
3 ) ∈ S◦ (A◦

2, m4) ∈ C◦
3

S◦ �→◦
R◦σS

◦
0σ

S◦
1 = S◦[(new(A

◦
i ),C◦

i,1)/(A◦
i ,C◦

i )]i∈{1,2,3} S◦
2 = S◦

1,2 ∪ S◦
2,2

C◦
1,1 = (C◦

1\◦T ◦) ∪+ C◦
1,2 η◦(P ◦) = (C◦

1,2, S
◦
1,2)

C◦
2,1 = (C◦

2\◦{T ′◦, A◦
1) η◦(Q◦) = (C◦

2,2, S
◦
2,2)

C◦
3,1 = C◦

3 ∪+ {(new(A◦
1), 1)} R◦ = R◦

1 ∪ {(A◦
i , new(A

◦
i ))}i∈{1,2,3}

Merge◦

(A◦
1, C

◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +mergem◦P ◦

(A◦
2, C

◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +mergem◦.Q◦

(A◦
3, C

◦
3 ) ∈ S◦ (A◦

1, m3)(A
◦
2, m4) ∈ C◦

3 A◦
1 = A◦

2 → m3 = m4 >m 1

S◦ �→◦
R◦σS

◦
0σ

S◦
1 = S◦[(new(A

◦
i ),C◦

i,1)/(A◦
i ,C◦

i )]
i∈{1,2,3} S◦

2 = S◦
1,2 ∪ S◦

2,2

C◦
1,1 = (C◦

1\◦T ◦) ∪+ C◦
1,2 ∪+ C◦

2,2 η◦(P ◦) = (C◦
1,2, S

◦
1,2) η◦(Q◦) = (C◦

2,2, S
◦
2,2)

C◦
3,1 =C◦

3\◦{A◦
1, A

◦
2}∪+{(new(A◦

1), 1)} R◦ =R◦
1∪{(A◦

i , new(A
◦
i ))}i∈{1,3}∪{(A◦

2,⊥)}
Common Part
S◦

0 =S◦
1∪ S◦

2 σ ∈ M(S◦
0 ) R◦

1 ={(B◦, B◦) | B◦ ∈ amb(S◦) ∩ amb(S◦
0 )} ∪ {(⊥, amb(S◦

2 ))}

The resulting state is S◦
0 = S◦

1 ∪S◦
2 where: (i) S◦

2 = S◦
1,2∪S◦

2,2 records the config-
urations describing the new ambients introduced by the move; (ii) S◦

1 is obtained
from state S◦ by replacing (A◦

i , C
◦
i ) with (new(A◦

i ), C
◦
i,1), for i ∈ {1, 2, 3}. Fi-

nally, state S◦
0 is normalized (by means of a normalization function σ) in order

to guarantee that the labels are properly merged according to the labeling dis-
cipline. The evolution relation R◦ tracks the variation of labels: (i) label A◦

i is
replaced by new(A◦

i ) for i ∈ {1, 3}; (ii) all the other ambients appearing in S◦

remain unchanged; (iii) the translation of the new processes may introduce new
ambients labels. Notice, however, that the effect of the normalization function
has to be properly propagated also to relation R◦. To this aim, we define R◦σ
in the obvious way, e.g. R◦σ = {(A◦, σ(B◦)) | (A◦, B◦) ∈ R◦}.
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The abstract semantics computes the abstract transition system starting from
a normalized version of the abstraction of the process. Given a process P ∈ P
and σ ∈ M(α◦(P )), we define S◦[[P ]], as the transition system obtained from
the initial process α◦(P )σ by considering the transitive closure of �→◦

R◦ .

Theorem 2 (Safeness). Let P ∈ P be a process, then α◦(S[[P ]])⊆◦S◦[[P ]].

4 An Example

We consider the (well-labeled) system (1) illustrated in the Introduction and we
present (in an informal way) the validation of the check-point property.

SY S ::= [M ](mol,Ψ1) | . . . | [M ](mol,Ψh) | [E](e,Δ1) | . . . | [E](e,Δk)

E ::= recY . inm.outn.Y M ::= inm. outn.P

We assume the same abstraction of names and labels of Ex. 1, and that
maxmol = 6 and maxe = max� = 0. We obtain the abstract transition sys-
tem of Fig.16, where we have an abstract transition S◦

i �→◦
Ri,j

S◦
j for each Ri,j =

RS◦
i ,S◦

j
∪ id(amb(S◦

i )) listed below.

S◦
1 ={(), C◦

0,1), (A
◦
1, C

◦
1,1), (B

◦∞, C◦
2,1)} S◦

2={(), C◦
0,1),(A

◦
1, C

◦
1,1),(B

◦
∞,C

◦
2,1),(B

◦
∞,C

◦
2,2)}

S◦
3 = {(), C◦

0,1), (A
◦
1, C

◦
1,1), (A

◦
2, C

◦
1,2), (B

◦
∞, C

◦
2,1), (B

◦
∞, C

◦
2,2), (B

◦
∞, C

◦
2,3)}

S◦
4 = {(), C◦

0,2), (A
◦
1, C

◦
1,1), (A

◦
2, C

◦
1,2), (A

◦
3, C

◦
1,3)(B

◦
∞, C

◦
2,1), (B

◦
∞, C

◦
2,2), (B

◦
∞, C

◦
2,3)}

S◦
5 = {(), C◦

0,3), (A
◦
1, C

◦
1,1), (A

◦
2, C

◦
1,2), (A

◦
3, C

◦
1,3)(B

◦
∞, C

◦
2,1), (B

◦
∞, C

◦
2,2), (B

◦
∞, C

◦
2,3)}

C◦
0,1 = {(A◦

1, [0− ω]), (B◦
∞, [0− ω])} C◦

0,2 = {(A◦
1, [0− ω]), (A◦

3, 1), (B
◦
∞, [0− ω])}

C◦
0,3 = {(A◦

1, [0− ω]), (A◦
3, [0− ω]), (B◦

∞, [0− ω])}
C◦

1,1 = {(M◦, 1)} M◦ ::= inm◦. outm◦.P ◦ C◦
1,2 = {(outm◦.P ◦, 1)} C◦

1,3 = {(P ◦, 1)}
C◦

2,1 = {(E◦, 1)} C◦
2,2 = {(E◦

1 , 1)} C◦
2,3 = {(E◦

2 , 1), (A
◦
2, 1)}

E◦ ::= recY . inm◦. outm◦.Y E◦
1 = inm◦. outm◦.E◦ E◦

2 = outm◦.E◦

RS◦
1 ,S◦

2
= RS◦

2 ,S◦
2

= RS◦
3 ,S◦

3
= RS◦

4 ,S◦
4

= RS◦
5 ,S◦

5
= ∅

RS◦
2 ,S◦

3
= RS◦

3 ,S◦
3

= RS◦
4 ,S◦

4
= RS◦

5 ,S◦
5

= {(A◦
1, A

◦
2)}

RS◦
3 ,S◦

4
= RS◦

4 ,S◦
5

= RS◦
5 ,S◦

5
= {(A◦

2, A
◦
3)}

State S◦
1 is the normalization of the translation of SY S, obtained by identifying

by means of the same abstract label the occurrences of ambients mol and e,
described by the same configuration. Note that all the occurrences of ambients
e are described by label B∞ = (e,∞), since maxe = 0.

Transition S◦
1 �→◦

R1,2
S◦

2 is obtained by rule Rec◦, and models the unfolding of
process E◦ inside an ambient e (labeled B◦

∞). Due to normalization all the oc-
currences of ambients e are described by label B◦∞; however, a new configuration
is added C◦

2,2 (containing the unfolded process E◦
1 ). As a consequence, relation

R1,2 = id(amb(S◦
1 )) shows that there is no variation of labels.

Transition S◦
2 �→◦

R2,3
S◦

3 is derived by rule In◦ and models the movement of
an ambient mol (labeled A◦

1) inside an ambient e (labeled B◦
∞). The involved

6 For simplicity, we safely approximate [1− ω] with [0− ω].
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S◦
1 S◦

2 S◦
3 S◦

4 S◦
5

Fig. 1. The abstract transition system

ambient mol is represented by a fresh label A◦
2 and by a new configuration C◦

1,2

(containing the continuation of process M◦). By contrast, the involved ambient
e is still represented by label B◦

∞ (due to normalization) and by a new configura-
tion C◦

2,3 (where an occurrence of ambient A◦
2 is added). The variation of labels is

recorded accordingly in relation R2,3 = {(B◦
∞, B◦

∞), (A◦
1, A

◦
2), (A

◦
1, A

◦
1), (%,%)}.

Transition S◦
3 �→◦

R3,4
S◦

4 (and analogously S◦
4 �→◦

R4,5
S◦

5 ) is derived by rule Out◦

and models the movement of an ambient mol (labeled A◦
2) out from an ambient

e (labeled B◦
∞). Similarly as in the case of In◦, the involved ambient mol is

modeled by a fresh label A◦
3 and by a new configuration C◦

1,3 (containing process
P ◦). Relation R3,4 = {(B◦∞, B◦∞), (A◦

2, A
◦
2), (A◦

1, A
◦
1), (%,%), (A◦

2, A
◦
3)} reports

the variation of labels.
Finally, notice that loop-transitions are due to the presence of several copies

of the molecule and enzyme ambients in SY S; they show that other occurrences
may repeat one of the previous interactions.

The simple reaction modeled by SY S is characterized by a crucial property:
for any ambient mol, the binding with an enzyme ambient is necessary for the
release of product P . This requirement can be expressed more formally by saying
that, for each ambient (named) mol: the presence inside an ambient e (denoted
by [mol]e) is a necessary check-point for the presence of process P running at
top-level (denoted by [P ]mol). This property can be established by reasoning on
the abstract transition system of SY S.

Intuitively, when just one copy of mol and e are in the system we should verify
that: for each path (starting from the initial state) where there exists a state
which may satisfy [P ]mol there also exists a previous state which must satisfy
[mol]e. The validation of state formulas such as [P ]mol and [mol]e is immediate
and can be formalized by simple conditions related to the configurations de-
scribing the possible contents of ambients (named) mol and (named) e resp.. In
the former case a state may satisfy [P ]mol whenever there exists a configuration
related to a label for name mol, which reports the possible presence of process
P . In the latter case, instead, a state must satisfy [mol]e, whenever each config-
uration related to a label for name e guarantees the presence of ambient mol.
Given that the abstract transition system is a safe over-approximation of the
concrete one this reasoning guarantees that the check-point property holds also
for the concrete transition system.

When more than one copies of ambients mol and e comes into the picture
we have to establish the previous property for any occurrence of ambient mol.
To this aim, however, we can profitably exploit the labeling discipline in order
to trace the possible evolution of each occurrence of ambient mol. Intuitively,
we have to consider all the labels related to name mol appearing in the initial
state; then, we have to observe their possible moves by taking into account
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each abstract transition and the possible variations of labels (reported by the
evolution relation). We discuss the main steps of the validation.

We recall that all the ambients (named) mol appearing in the system are
initially described by label A◦

1 (see state S◦
1 ). Moreover, we observe that there

are only two states which may satisfy [P ]mol, e.g. S◦
4 and S◦

5 . Both states say that
the ambients mol labeled A◦

3 may contain process P , as reported by configuration
C◦

1,3. Hence, we can restrict the attention to the paths from state S◦
1 to states

S◦
4 and S◦

5 , by taking into account the corresponding evolution of label A◦
1. For

each, we have to guarantee that either label A◦
1 cannot evolve into label A◦

3 or
that there exists an intermediate state and a corresponding label which must
satisfy [mol]e.

We begin by observing that state S◦
1 shows that there are no occurrence of

ambient mol which satisfy [mol]e. This is because all the occurrences of ambients
e are described by label B◦

∞ and by configuration C◦
2,1, which does not contain

ambients labeled A◦
1. Hence, we have to consider the possible derivatives of label

A◦
1 for each move.
In the move from S◦

1 to S◦
2 no variation of the labels related to name mol, e.g.

A◦
1, is reported. Therefore, we are left in considering again label A◦

1 in state S◦
2 .

Analogously as in the case of S◦
1 , there are no occurrences of ambient mol which

satisfy [mol]e. As a consequence, we have still to consider the possible derivates
of label A◦

1 for each move.
In the move from S◦

2 to S◦
3 pairs (A◦

1, A
◦
2), (A◦

1, A
◦
1) appear in the evolution

relation R2,3 showing a variation of label A◦
1. This means that in state S◦

3 we have
to consider both labels A◦

1 and A◦
2. For A◦

1 the same considerations used in states
S◦

1 and S◦
2 hold; by contrast, the occurrences related to label A◦

2 satisfy property
[mol]e. In fact, all the occurrences related to A◦

2, appearing in the system, must
reside inside an ambient named e (if any) labeled B∞, described by configuration
C◦

2,3. Therefore, we are left to consider again the possible evolution of label A◦
1,

for each move (label A◦
2 is not considered anymore because we have already

established [mol]e).
In the move from S◦

3 to S◦
4 we observe that, according to relation R3,4, label

A◦
1 does not vary, thus we have to consider again label A◦

1. Notice that S◦
4 is

one of the critical states in that it reports the possibility for some occurrences
of ambients mol (those related to label A3) to satisfy [P ]mol. However, there is
no violation of the check-point formula in that: label A3 is an evolution of label
A2 for which we have already proved [mol]e in a previous state. For label A1 in
state S◦

4 it is enough to apply the same arguments used for state S◦
3 . This means

that we have to continue by considering the possible images of label A◦
1 in state

S◦
5 . For S◦

5 it is enough to apply an argument similar to that used for S◦
4 , by

observing that label A◦
1 does not vary.

Note that, in the reasoning above, we have not considered loop-transitions.
Since they model the same variations of labels, it is enough to repeat the same
arguments applied before.
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5 Conclusions and Related Works

Our analysis is much more informative and powerful with respect to the reach-
ability analyses for BA/MA. This is obviously paid in terms of complexity
(in the worst case, the analysis is double exponential in the size of the abstract
process); by contrast, most of the existing proposals [27,11,14,21,29,28,30,31,15]
are associated with polynomial time algorithms. Our approach, however, offers
several possibilities for finding a balance between precision and computational
cost. The abstraction is parametric, in the sense that one can choose which part
of the system he is interested in: (i) by defining equivalence classes of names;
and (ii) by properly choosing the parameters maxa◦ for each abstract name a◦.
Moreover, in [17] we show that the widening operators [9] approach of abstract in-
terpretation can suitably be applied also to our analysis, and we derive a weaker
but more efficient (exponential) analysis. The widening is obtained by merging
into a single configuration all the configurations related to a given name a◦ and
run-time label ∞. This widening is still able to prove the checkpoint property
for system (1) discussed in this paper.

A few related papers have to be mentioned. The reachability analyses of
[26,14,15] compute very precise information about occurrence counting, and
support the validation of interesting properties, such as mutual exclusion. The
techniques of [26,15] could probably be extended in order to derive an abstract
transition system, able to accurately describe multiple copies of ambients. It
is not clear whether the validation of temporal properties, which hold for any
occurrence of an ambient, can be formalized in this setting. In [13] an occur-
rence counting analysis has been used to infer temporal properties of π-calculus
processes. [12] defines for MA a finite abstract model able to establish security
properties by means of model checking techniques. The derived model, however,
is not sufficiently precise for validating the examples illustrated in this paper.
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Abstract. We define and study a distributed cryptographic implementation for
an asynchronous pi calculus. At the source level, we adapt simple type systems
designed for establishing formal secrecy properties. We show that those secrecy
properties have counterparts in the implementation, not formally but at the level
of bitstrings, and with respect to probabilistic polynomial-time active adversaries.
We rely on compilation to a typed intermediate language with a fixed scheduling
strategy. While we exploit interesting, previous theorems for that intermediate
language, our result appears to be the first computational soundness theorem for
a standard process calculus with mobile channels.

1 Introduction

In security, both attacks and defenses can operate at various levels of abstraction. For a
distributed program, reasoning about security can be in terms of programming-language
constructs and concepts, or in terms of their implementations. When those implementa-
tions use cryptography, the cryptographic primitives may be represented as black boxes,
as specific functions on bitstrings, or even as computing processes with timing and
power-consumption characteristics that an attacker may attempt to exploit. While pro-
gramming abstractions for security can be helpful, they should ideally be mapped to
concrete implementations that resist realistic low-level attacks.

In the last decade, a substantial research effort has started to address this problem
(e.g., [1, 5, 7, 9, 11–13, 17, 19]). In this paper, we contribute to this line of work by inves-
tigating an implementation of a concurrent language with message passing and channel
mobility. We treat cryptography both formally (in terms of symbolic expressions) and
computationally (at the level of bitstrings, with resource-bounded adversaries).

Specifically, we define and study a distributed cryptographic implementation for an
asynchronous pi calculus. At the source level, we adapt simple type systems designed
for establishing formal secrecy properties. In particular, we rely on secrecy types for
asymmetric communication, in the style of the local pi calculus [3, 18], and on the
name-confinement guarantees implied by putting names into scoped groups [14]. We
show that those secrecy properties have strong computational counterparts in the imple-
mentation, with respect to probabilistic polynomial-time active adversaries that operate
on concrete bitstrings.

The implementation leverages Laud’s recent results [17] on secrecy by typing in the
context of a simulatable cryptographic library [9, 11, 12]. Laud has defined a restricted
variant of the spi calculus [6] with a fixed scheduling strategy and without channel
mobility (so with fixed, global communication ports). We use Laud’s calculus as an
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intermediate language: we translate the pi calculus to his calculus, then rely on his use
of the simulatable cryptographic library. Laud employs a type system for secrecy and
proves its soundness with respect to the cryptographic library. We show that our trans-
lation is type-preserving. Then, via Laud’s results, we obtain computational secrecy
guarantees, as a soundness theorem for our pi calculus typings.

Related Work. The comparison of formal and computational cryptography is an ac-
tive research field (e.g., [7, 11, 17, 19]); it has produced computational justifications for
formal models of cryptographic operations and for classes of protocols that use formal
cryptography. At a higher level, we have implementations of process calculi in terms of
black-box, formal cryptography (e.g., [1, 4, 5]). It might be tempting to try to compose
the results from those two efforts. For instance, one might imagine a translation from
the pi calculus to Turing machines via the spi calculus. Unfortunately, this strategy is
not viable at present, and may never be. First, compiling the pi calculus to the spi calcu-
lus while preserving security guarantees is difficult at best [1]. In addition, we lack a full
computational interpretation for the pi or the spi calculus; in particular, the pi calculus
features non-determinism and non-termination, which seem at odds with probabilistic
polynomial-time computation. Type systems do help, as does a certain realism in setting
goals—for instance, aiming to preserve only secrecy properties, and not necessarily all
testing equivalences. Alternatively, one may alter the pi calculus to reflect implementa-
tion constraints; Adão and Fournet [8] thus designed a calculus with mobile names (but
not mobile channels) and ad hoc communications primitives, and established the com-
putational soundness of its implementation for observational equivalence. Other works
also develop implementations of abstract security functions. In particular, Canetti and
Krawczyk have considered the problem of implementing secure channels [13], without
however a language framework.

Our main result appears to be the first computational soundness theorem for a stan-
dard process calculus with mobile channels. In fact, the literature does not seem to con-
tain even a computational soundness theorem for CCS. Going beyond CCS, the main
difficulties that we address pertain to channel scopes and mobility, which are central to
the pi calculus. Secrecy by typing can be regarded as a discipline for that mobility.

Contents. Section 2 defines our source language. Section 3 presents a local type sys-
tem. Section 4 explains the intermediate language. Section 5 describes a distributed
implementation of the asynchronous pi calculus. Section 6 presents the computational
secrecy result. Section 7 considers the addition of name groups. Section 8 concludes.

2 The Source Language

This section introduces our source process calculus, by giving its syntax and semantics.
It also discusses secrecy, informally.

The syntax of the calculus appears in Figure 1. It assumes an infinite set of names and
an infinite set of variables; a, b, c, k, s, and similar identifiers range over names, and
x, y, and z range over variables. The syntax distinguishes a category of terms (data)
and processes (programs). The terms are variables and names. The processes include
constructs for communication, concurrency, and dynamic name creation, roughly those
of the pi calculus, and a conditional. The calculus is polyadic, in the sense that messages
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M,N ::= terms
x, y, z variable
a, b, c, k, s name

P,Q ::= processes
M〈M1, . . . ,Mn〉 output
M(x1, . . . , xn).P input
!M(x1, . . . , xn).P replicated input
0 nil
P |Q parallel composition
(νa)P restriction
if M = N then P else Q conditional

Fig. 1. Syntax of the process calculus

are tuples of terms, and asynchronous, in the sense that the output construct does not
have a built-in acknowledgment. Inputs may be replicated by prefixing a “!”. We write
!=M(x1, . . . , xn) when the replication is optional. As usual, we may omit an “else”
clause when it consists of the nil process 0. The name a is bound in (νa)P . The variables
x1, . . . , xn are bound in P in the process M(x1, . . . , xn).P . We write fn(P ) for the set
of names free in P . A process is closed if it has no free variables; it may have free
names. We identify processes up to renaming of bound names and variables.

The semantics of our calculus is defined as usual for the asynchronous pi calculus.
We write P → Q when P reduces to Q in a single reduction step. We write P ≡ Q
when P and Q are structurally equivalent. We also let ≈ represent weak observational
congruence. These relations are defined only on closed processes; their definitions ap-
pear in the full version of this paper.

Concepts of Secrecy. In this formal setting, there are two different definitions of se-
crecy. (See [2] for some discussion and references.) According to the first definition,
a process P preserves the secrecy of a piece of data M if P never publishes M , or
anything that would permit the computation of M , even in interaction with an attacker.
This kind of secrecy guarantee is common in the analysis of security protocols. It is
particularly adequate and effective for dealing with the secrecy of fresh values that can
be viewed as atomic, such as keys and nonces. Cardelli, Ghelli, and Gordon, and also
Abadi and Blanchet, use versions of this definition in their work on secrecy by typ-
ing [3, 14]. Even though both Laud’s type system and ours draw on those works, our
computational results correspond to a stronger definition of secrecy. According to this
second definition, a process P (x) preserves the secrecy of the value of a variable x if
an adversary cannot distinguish P (M) from P (N) for every M and N . This definition
has the advantage of excluding partial or implicit flows of information.

3 A Local Type System for the Source Language

In this section we give a first type system for the source language. This type system
enforces asymmetric communication in the sense of the local pi calculus [18].

Our type system is based upon that of Abadi and Blanchet [3], as is Laud’s (so this
section is partly a review, borrowing from previous papers). More precisely, we adapt
a fragment of the original type system which excludes cryptography. In order to match
Laud’s intermediate type system, we also modify the subtyping relation, and restrict the
typing rule for conditionals. Our types are defined by the grammar:
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T ::= DSecret | CSecret[T1, . . . , Tn] | CPublic[T1, . . . , Tn] | Public

Type DSecret is used for data intended to be kept secret, like message payloads of a
protocol; CSecret[T1, . . . , Tn] is the type of a channel on which the adversary cannot
communicate, and which carries n-tuples with components of types T1, . . . , Tn. On the
other hand, CPublic[T1, . . . , Tn] is the type of a channel on which the adversary may
send (but not receive) messages; the channel may be intended to carry n-tuples with
components of types T1, . . . , Tn, but the adversary may send any data it has on the
channel. Finally, Public is the type of all public data. The subtyping relation is the least
reflexive relation such that CPublic[T1, . . . , Tn] ≤ Public.

The rules of the type system concern four judgments:

– E � � means that E is a well-formed environment.
– E � M : T means that M is a term of type T in environment E.
– E �� M :S means that S is the set of possible “true” types of M in environmentE.
– E � P says that the process P is well-typed in environment E.

The rules are as follows. The metavariable u ranges over both names and variables.

Well-formed environment: ∅ 
 *
E 
 * u /∈ dom(E)

E, u : T 
 *

Terms:
E 
 * (u : T ) ∈ E

E 
 u : T

E 
M : T T ≤ T ′

E 
M : T ′

Sets of types of terms:
E 
 * (x : T ) ∈ E
E 

 x : {T ′ | T ′ ≤ T}

E 
 * (a : T ) ∈ E
E 

 a : {T}

Processes:

E 
M : Public ∀i ∈ {1, . . . , n}, E 
Mi : Public

E 
M〈M1, . . . ,Mn〉
(Output Public)

E 
M : CL[T1, . . . , Tn] ∀i ∈ {1, . . . , n}, E 
Mi : Ti

E 
M〈M1, . . . ,Mn〉
(Output CL)

(a : Public) ∈ E E, x1 : Public, . . . , xn : Public 
 P
E 
!=a(x1, . . . , xn).P

(Input Public)

(a : CPublic[T1, . . . , Tm]) ∈ E E, x1 : Public, . . . , xn : Public 
 P
E, x1 : T1, . . . , xm : Tm 
 P if m = n

E 
!=a(x1, . . . , xn).P
(Input CPublic)

(a : CSecret[T1, . . . , Tn]) ∈ E E, x1 : T1, . . . , xn : Tn 
 P
E 
!=a(x1, . . . , xn).P

(Input CSecret)

E 
 *
E 
 0

(Nil)
E 
 P E 
 Q

E 
 P |Q (Parallel)
E, a : T 
 P T �= DSecret

E 
 (νa)P
(Restriction)

E 

 M : S1 E 

 N : S2 DSecret /∈ S1∪S2 if S1∩S2 �= ∅ then E 
 P E 
 Q
E 
 if M = N then P else Q

(Cond)

The typing rules for output say that any public data can be sent on a public chan-
nel, and tuples with the expected types T1, . . . , Tn can be sent on a channel of type
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CL[T1, . . . , Tn], for L ∈ {Public, Secret}. Therefore, by subtyping, any public data
can be sent on a channel of type CPublic[T1, . . . , Tn]. On the other hand, the attacker
cannot have channels of type CSecret[T1, . . . , Tn]. Therefore, we can guarantee that only
tuples with types T1, . . . , Tn can be sent on such channels. In the rules for input, the
channel in question is required to be represented by a name a (not a variable), as in the
local pi calculus. We distinguish three cases, considering the type of a.

– If a is of type Public, then the corresponding output must have been typed using
(Output Public), so the input values are public. Rule (Input Public) treats this case.

– When a is of type CPublic[T1, . . . , Tm], two cases arise. In the first case, the cor-
responding output has been typed using (Output Public) and subtyping. Then the
input values are of type Public. In the second case, the corresponding output has
been typed using (Output CL). In this case, the input values have the expected types
T1, . . . , Tm. Rule (Input CPublic) takes into account both cases, by checking that
the process P executed after the input is well-typed in both.

– When a is of type CSecret[T1, . . . , Tn], it cannot be known by the attacker, and the
corresponding output must have been typed using (Output CL). The input values
are therefore of the expected types T1, . . . , Tn.

Rule (Cond) exploits the idea that if two terms M and N cannot have the same type,
then they are certainly different. In this case, the process if M = N then P else Q may
be well-typed withoutP being well-typed. To determine whetherM andN may have the
same type, we determine the set of possible types of M and N . If M is a variable x, and
(x : T ) ∈ E, thenxmay of course have typeT . Because of subtyping, whenT = Public,
x may also be replaced at run-time with a name whose type is a subtype of T . Hence the
possible types of x are {T ′ | T ′ ≤ T }. When M is a name a, its only possible type is the
type assigned to it in the environment. Rule (Cond) also has a condition that excludes any
comparison of DSecret terms. This condition simply rules out any flow of information
from DSecret values to the control flow of the process, which may be observable by the
adversary. Finally, rule (Restriction) excludes the creation of names with type DSecret

(although not of names with secret-channel types). These two last conditions on rules
(Cond) and (Restriction) are not present in the work of Abadi and Blanchet, but they are
imposed to meet the requirements of payload secrecy (see Section 4).

An Example. We revisit and adapt an example from Abadi and Blanchet that concerns
the following protocol in which A sends to B a secret s and B acknowledges it:

Message 1. A→ B : k, a on b
Message 2. B → A : k, k′ on a
Message 3. A→ B : s on k′

Message 4. B → A : ack on k

Here, a and b are channels with A and B as only receivers, respectively. Initially, A
creates a secret channel k, and sends it along with the return channel a on b. In response,
B sends k, as proof of origin, along with a new secret channel k′. Finally, A sends s
on k′, and B sends ack on k. The goal of this protocol is to guarantee the secrecy of s.

In our calculus, we may represent the principals of this protocol by the processes:

A = (νk)(b〈k, a〉 | a(x, y).if x = k then (y〈s〉) | k(z))
B = b(x, y).(νk′)(y〈x, k′〉 | k′(z).x〈ack〉)



258 M. Abadi, R. Corin, and C. Fournet

As detailed below, we can assign types such that A | B typechecks with type DSecret

for s. According to our main result (Theorem 1), this typing implies the computational
secrecy of any value substituted for s. We let

E = a : CPublic[CSecret[Public],CSecret[DSecret]],
b : CPublic[CSecret[Public],CPublic[CSecret[Public],CSecret[DSecret]]],

s : DSecret, ack : Public

and obtain E � A |B as follows. In the typing of A, we choose k : CSecret[Public].
The output b〈k, a〉 is then typed by rule (Output CL). The input a(x, y) is typed by rule
(Input CPublic), and two cases arise:

– x : Public, y : Public. This case is vacuous by rule (Cond): in the test x = k, the
two terms do not have common types.

– x : CSecret[Public], y : CSecret[DSecret]. In this case, the output y〈s〉 is typed by
(Output CL). (The condition of (Cond) is fulfilled: DSecret �∈ {CSecret[Public]}.)
The remaining input k(z) is easily typed by rule (Input CSecret).

In process B, the input b(x, y) is typed by (Input CPublic), and two similar cases arise.

4 The Intermediate Language

The models of Backes et al. and Laud are concerned with configurations of probabilistic
polynomial-time Turing machines. The machines are connected at ports; two ports can
be connected by a wire. Some of these machines represent honest parties; others are
controlled by the adversary. At any given time, at most one machine is active.

The Idealized Cryptographic Library [9–12]. The cryptographic library provides
an abstract view of cryptography, in the following sense. Each principal is associated
with a deterministic machine Pi; this machine is connected to a concrete instance of
the library Mi that runs all cryptographic algorithms on behalf of Pi and maintains a
database that maps abstract handles to cryptographic representations. Instead of n con-
crete library machines Mi, one can connect a single idealized library THn, with the
same ports, that maps abstract handles to shared, symbolic (“Dolev-Yao”) represen-
tations. The main results of Backes et al. relate the security of two systems that use,
respectively, the concrete and idealized versions of the library, under standard compu-
tational cryptographic assumptions. Hence, in order to prove the security of a system
that uses the concrete version, it suffices to reason on a system that uses the idealized
version.

Laud’s Intermediate Language [17]. Laud’s language can be used for programming
each of the machines Pi, using processes that can send and receive messages and ab-
stractly operate on message contents using library calls. Although the language is in-
spired by the spi calculus, its semantics is significantly different, as it reflects low-level
implementation constraints of the cryptographic library. In particular:

– Communications occur on global, static, bidirectional channels, associated with the
ports of the underlying machines. Some of these channels are intrinsically secure,
but are used solely to code initialization and security specifications.
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– The adversary controls the scheduling between machines, and all channels that rep-
resent an untrusted network. Hence, it can intercept all network traffic, and even
disable the execution of a local process. (In contrast, a pi calculus context can read
a replicated output message on a public channel, but cannot prevent other processes
from reading it as well; see [8].)

– In other respects, the language is deterministic; in particular, parallel execution
within a machine is supported by an interpreter that maintains a run-queue of input
processes.

– The control flow of the machines is carefully restricted. When a machine is acti-
vated, it reads a single message from one of its input wires, it processes the message
and runs for a bounded amount of time, it puts at most one message in one of its
output wires, and yields.

– The usage of the library imposes some programming discipline, for instance to
exclude encryption cycles [9] or the leakage of private keys.

We use the following grammar for Laud’s language, with minor syntactic changes:

v ::= values
x variable
n integer constant
⊥ failed computation

e ::= expressions
v value
gen nonce() nonce generation
gen symenc key(i) symmetric-key generation
privenc(ek, et) symmetric-key encryption
privdec(ek, et) symmetric-key decryption
keypair() asymmetric-key generation
pubkey(e) asymmetric encryption key
pubenc(ek, et) asymmetric-key encryption
pubdec(ek, et) asymmetric-key decryption
store(e) value storage
retrieve(e) value retrieval (by handle)
list(e1, . . . , en) list
list proj(ei, e) projection

I ::= input process
c(x).Q input
!c(x).Q replicated input

I∗ ::= sequence of inputs
I ; I∗

0
Q ::= processes

I∗ input
c〈e〉.I∗ output
⊥ run-time failure
let x = e in Q1 else Q2

let binding
if e = e′ then Q1 else Q2

conditional

Expressions represent calls to the cryptographic library. These calls, when successful,
return handles to new entries; otherwise they return ⊥. Expression gen nonce() creates
a fresh nonce. Expression gen symenc key(i) generates a symmetric key (where i is
a key rank used to prevent cycles; see Section 7). Expression keypair() generates an
asymmetric key pair and returns the private decryption key; pubkey(e) returns the asso-
ciated encryption key. Expressions privenc(ek, et), privdec(ek, et), pubenc(ek, et), and
pubdec(ek, et) provide encryptions and decryptions; decryption visibly fails if et is
not a message encrypted under the key associated with ek. Expressions store(e) and
retrieve(e) store and retrieve data, to and from the library, respectively. Expression
list(e1, . . . , en) constructs a list from n values; list proj(ei, e) retrieves its ith value.

Input processes I represent passive threads, held in the interpreter run-queue. Proc-
esses Q represent threads activated by an input; they perform at most one output, and
append input processes I∗ to the run-queue. Processes for input, output, and conditional
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are similar to those of the source calculus. Process let x = e in Q1 else Q2 evaluates
the expression e; if evaluation succeeds, then Q1 runs with the result value substituted
for x; otherwise, Q2 runs. Process ⊥ represents run-time failure, written II for “invalid
input” in [17]. Intuitively, ⊥ causes the current thread to abort, for instance after failing
an evaluation or a test: the input process that triggered the thread is put back into the
run-queue, and the rejected message is passed to the next input in the run-queue.

Next, we give the syntax for types for the intermediate language, as it is used in this
paper. See [17] for further details, including the subtyping relation and the typing rules.

T ::= intermediate types
Public public data
SecData secret data
SNonce secret nonce
EK[T ] asymmetric encryption key
DK[T ] asymmetric decryption key
list(T1, . . . , Tn) list
SKi[T ] symmetric key
T1 + T2 sum

Type Public is the type for public data. Its counterpart for secret data is SecData. Type
SNonce is the type for secret nonces. Type list(T1, . . . , Tn) is for lists. Types EK[T ]
and DK[T ] are the types of public/private asymmetric keys for encrypting values of
type T , while SKi[T ] is the type of symmetric keys of order i for encrypting values of
type T . The index i is used for avoiding encryption cycles. Finally, type T1 + T2 is the
sum type of T1 and T2. Sum types play a role similar to the double typing of P in rule
(Input CPublic) of Section 3.

Secrecy by Typing. A concrete configuration Cn = 〈S,H,A〉 consists of a concrete
system S of (Pi)i=1..n machines connected to their library machines (Mi)i=1..n, along
with a user machine H connected to free ports of S, plus an adversary machine A that
connects all the remaining unconnected ports. Let (Ii)i=1..n be intermediate-level input
processes (hence, consisting of passive threads) used to program the machines Pi of
S. Laud’s results [17, Theorem 1, Corollary 2] say that if each Ii typechecks in some
environmentΓ , thenCn preserves secrecy of all data communicated by the user machine
H to S. More precisely, Laud shows that in the configuration Cn, the system S preserves
payload secrecy of all user data, in the sense defined by Backes and Pfitzmann within the
simulatable cryptographic library [10]. Basically, a system S preserves payload secrecy
if no adversary A, even if colluding with a user machine H, can distinguish an instance
of S running with the user inputs provided by H from an instance of S where the inputs
are converted to random values (and then replaced back), by a “scrambling” machine F
that runs between S and H. Hence, the notion of payload secrecy can be regarded as a
computational version of the second formal definition of secrecy described in Section 2.

5 A Distributed Implementation of the Source Language

In this section, we translate assemblies of pi calculus processes into intermediate-lan-
guage input processes. A pi calculus process represents a concurrent system, but does
not indicate the distribution of its subprocesses across machines.
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For the source process P =
∏

i=1..n Pi, our implementation distributes the subpro-
cesses Pi across the machines Pi, for each i = 1..n.

We first rearrange the source processes Pi into threads. We then give a compositional
translation for the threads that run within each machine. Finally, we describe the top-
level implementation and its initialization process.

Normal Forms for Source Processes. Source threads are processes that perform a se-
ries of name creations and tests, then yield a parallel composition of inputs and outputs.
We use the following grammar:

A ::= atomic processes
M(x1, . . . , xn).T input
!M(x1, . . . , xn).T replicated input
M〈M1, . . . ,Mn〉 output

T ::= threads
(νn)T restriction
if M = N then T else T ′ conditional∏n

i=1Ai (n ≥ 0) atomic processes

For every source process P , we show that there exists a thread T ≈ P , obtained from
P by repeatedly applying the two rewriting steps below in all process contexts:

P |(νn)Q � (νn)(P |Q) after renaming n so that n /∈ fn(P ) (1)

P | if M = N then Q else Q′ � if M = N then P |Q else P |Q′ (2)

Step (1) is a structural equivalence. Step (2) is an observational equivalence in all con-
texts. Both steps preserve source typing, and the rewriting always terminates. We let
T (P ) represent one such thread for P .

Machine Translation. The core of our translation maps channel-based communica-
tions to runs of a particular cryptographic protocol.

Informally, the machine run-queue contains one input process for every running
atomic process of the source process. When a machine is proposed a message, the mes-
sage is matched against the pending inputs in the run-queue. If the message is accepted
by the translation of an input, then the message triggers the translation of a thread,
which runs to completion, then returns one acknowledgment message and appends new
input processes to the run-queue. If the message is accepted by the translation of an
output, then the message simply triggers this pending output.

We translate a termM to a list of two elements: an encryption key and a nonce. We let
M+ = list proj(M, 1) and M c = list proj(M, 2). We write let x1, . . . , xn = e in P
to abbreviate let l = e in let x1 = list proj(l, 1) in . . . in let xn = list proj(l, n)
in P else ⊥ . . . else ⊥ where l does not occur in P .

We translate processes as follows:

[[M〈M1, . . . ,Mn〉]] = cont( ).net〈pubenc(M+, list(Mc,M1, . . . ,Mn))〉
[[!=a(x1, . . . , xn).P ]] = !=net(z).let a′, x1, . . . , xn = pubdec(a−, z) in

if a′ = ac then (ack〈 〉.[[P ]]) else ⊥
[[0]] = 0

[[P |Q]] = [[P ]]; [[Q]]
[[(νa)P ]] = let a− = keypair() in

(let a = list(pubkey(a−), gen nonce()) in [[P ]] else 0) else 0
[[if M = N then P else Q]] = if M = N then [[P ]] else [[Q]]
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We represent every output by an encryption followed by an output on a public chan-
nel net , and every input by the corresponding input and decryption. Specifically, we
translate a local channel a to an asymmetric key pair (with public key a+ and private
key a−) and a nonce ac. The capability to receive on channel a is represented by hav-
ing a−, while the capability to send on channel a is represented by having both a+

and ac. The nonce ac is necessary as well as the key a+ because, under standard cryp-
tographic assumptions, a+ may be recovered from any message encrypted under a+.

Every output is guarded by an input on channel cont . This guard ensures that our
implementation sends one output at a time. Conversely, every successful input is ac-
knowledged by an immediate output on channel ack , so that the environment knows
that the message has been delivered and need not be proposed again—as required for
functional correctness. (The symbol represents a fresh variable or a dummy value.)
The translation of inputs is defined only for local channel names—not for variables, as
in x(y).P ; this condition ensures that every input translation is within the static scope
of the corresponding decryption key.

Crucially, our implementation does not depend on typing information. In contrast
to ordinary types, secrecy types need not be known to the implementor. They express
relative secrecy properties that can be used for studying the behaviour of a system in
the presence of an adversary, possibly with different typings for different adversaries.

Initialization of the Distributed Computation. Initialization deals with the free names
of the source processes Pi for i = 1..n. We first group these names, as follows. Let ãi

be the free names used for input in Pi. Let ã = ∪ãi, b̃i = fn(Pi) \ ãi, and b̃ = ∪b̃i \ ã.
Informally, the names b̃ represent data supplied by the attacker or the user.

We require that ãi ∩ ãj = ∅ when i �= j, thereby reflecting a requirement of the un-
derlying cryptographic library: asymmetric decryption keys cannot be communicated.
It is similar to the locality requirement of the local pi calculus. Otherwise, our typed
translation would accommodate the distribution of private encryption keys as well.

Turning our attention to the knowledge of the adversary, we let ãRW represent names
controlled by the adversary, such that ãRW ∩ ã = ∅, and let ãW ⊆ ã represent names
made available to the adversary for output. We finally let s̃ be b̃ \ ãRW . These names
represent user secrets.

We are basically interested in source processes that behave like (νã)(export〈ãW 〉 |
import(ãRW ).(P1 | . . . |Pn){M̃/s̃}), where M̃ are the secrets substituted for s̃. In or-
der to obtain a distributed program in the intermediate language, we use an additional
machine P0 for initialization. In particular, P0 distributes the cryptographic materials
associated with top-level restricted channels, using low-level secure communications.

We introduce syntactic sugar for polyadic communication in the intermediate lan-
guage: we let c(x̃).P abbreviate c(z).let x̃ = z in P and c〈ẽ〉.P abbreviate c〈list(ẽ)〉.P .
We arrive at the following definition for the intermediate-level input processes I0, I1,
. . . , In initially hosted by the machines P0, P1, . . . , Pn:

I0 = (export i(ãi))i=1..n.export〈ãW 〉.import(ãRW ).user (s̃).(cont( ).import i〈̃bi〉)i=1..n

Ii = cont( ).[[(νãi[ ])]]
[
export i〈ãi〉.import i(̃bi).[[T (Pi)]]

]
for i = 1..n

where export i and import i are low-level secure channels between P0 and Pi, user is
a low-level secure channel from the user H to P0, export and import are low-level
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channels between P0 and the adversary A, the context [[(νãi)[ ]]][ ] is the translation
of the source context that binds the names ãi, and ( )i=1..n abbreviates a sequence of
actions for i = 1, . . . , n.

(Considering that initialization is part of the specification, rather than the imple-
mentation itself, we rely on low-level secure channels. We could perform most of the
initialization on net , but we would still rely on some initial key distribution.)

In summary, our concrete distributed configuration Cn = 〈S,H,A〉 consists of a
system S of n + 1 machines Pi that each runs the intermediate-language processes Ii

defined above plus n+ 1 library machines Mi that realize the cryptographic primitives,
along with a user machine H and an adversary machine A.

Discussion. Our definition of the processes Ii for i = 1..n does not depend on the
origin of the imported values b̃i. In other words, the implementation does not know a
priori which values are controlled by the adversary. This origin is determined instead
in the definition of I0, by the multiplexing between values that come either from peer
machines or from the adversary.

For simplicity, our implementation assumes that all communications are distribu-
ted—even if Ii includes matching inputs and outputs. We could also support (and
typecheck) a sort of channels for machine-local communications, with an optimized
implementation that does not rely on cryptography.

Our implementation is not meant to resist all attacks. Indeed, the adversary can af-
fect the control flow of the program, for instance by replaying messages. Consider for
example the source process P = (νa)(a〈〉 | a().a().adv 〈s〉). According to the pi calcu-
lus semantics, P preserves the secrecy of s from a context that knows adv—in fact P
behaves just like the inert process 0. With our implementation, the secrecy of s is bro-
ken if the adversary has the decryption key for adv : the adversary observes an opaque
message on net (produced by evaluating pubenc(a+, list(ac))) and it can forward that
message twice to the machine that hosts the inputs on a, causing that machine to send
back pubenc(adv+, list(adv c, s)), and eventually the adversary can extract s. Note,
however, that the rules of Section 3 safely exclude any typing E � P that contains both
s : DSecret and adv : Public.

Functional Correctness. Although we are mainly interested in secrecy, it is also im-
portant to check that our implementation actually works. We therefore establish that our
implementation is functional for one particular definition of the adversary that imple-
ments a reliable network.

To this end, we briefly recall the main notations used by Laud in the deterministic
operational semantics of the intermediate language. Let Pi[Q] represent the passive
state of a local machine that implements the series of input processes Q, along with the
state of the idealized cryptographic library. We write (Pi[Q], α) −→−→ (P′

i[Q
′], β⊥) for a

series of computation steps from state Pi[Q] to state P′
i[Q

′]. The message α represents
an encoded input from the adversary. The outcome β⊥ represents either an encoded
output or ⊥, which indicates either that the input was not accepted or that the input
was accepted with no response. We omit the definition of encoded inputs and outputs,
and simply write ((A)) for an encoded message produced by Pi to send the source
output A.
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We state operational correspondences for inputs and outputs as follows. We let T ,
T ′, T ′′ range over parallel compositions of source inputs and outputs, and let A range
over source outputs.

– If T |A → T ′ then T |A → P and (Pi[[[T ]]],net((A))) −→−→ (P′
i[[[T

′′]]]), ack) for
some P and (νã′)T ′′ ≡ T (P ). Otherwise, (Pi[[[T ]]], net((A))) −→−→ (P′

i[[[T ]]],⊥).
– If T has an output, then T ≡ A |T ′′ and (Pi[[[T ]]], cont) −→−→ (P′

i[[[T
′′]]],net((A)))

for some A and T ′′. Otherwise, (Pi[[[T ]]], cont) −→−→ (P′
i[[[T ]]],⊥).

These correspondences reflect an unknown, deterministic scheduling; they guarantee
only that, if some threads in T may input A, then one of their implementations will
input A, and similarly for outputs. In the first correspondence, (νã′) represents the
new restrictions in evaluation context; their translations create new keys recorded in the
library, so the source restrictions are discarded in T ′′.

The proposition below relies on the cooperation of an adversary N that performs
initialization, then repeatedly retrieves all pending outputs, stores them in a queue, and
repeatedly attempts to deliver the pending outputs to each of the machines in turn. The
proposition states that the implementation then follows one of the expected (finite or
infinite) source traces.

Proposition 1 (Functional correctness). Let the machines (Pi)i=0..n implement the
source processes (Pi)i=1..n with initialization parameters ã, ãRW , ãW , s̃. Let S be the
idealized system ((Pi)i=0..n,THn). Let P = (νã)

∏
i=1..n Pi.

There exist an adversary N, a user H, and source reductions P →∗ P ′ �→ (or P →�

P ′ for any � ≥ 0) such that P ′ ≡ (νã′)
∏

i=1..n P ′
i and the configuration (S,H,N)

reaches a state such that the run-queue of every machine Pi of S contains the input
processes [[T (P ′

i )]] for i = 1..n.

6 Computational Secrecy by Local Typing

We establish payload secrecy for the distributed implementation of arbitrary source pro-
cesses. We translate types and type environments, then verify that source type deriva-
tions always yield valid type derivations in the intermediate language. The translation
of types is as follows:

[[DSecret]]t = SecData
[[Public]]t = Public

[[CSecret[T1, . . . , Tn]]]t = list(EK[list(SNonce, [[T1]]
t, . . . , [[Tn]]t)],SNonce)

[[CPublic[T1, . . . , Tn]]]t = list(EK[list(Public, [[T1]]
t, . . . , [[Tn]]t)],Public)

Hence, the translation of channel types follows our choice of communication protocol.
We lift our translation from types to environments. When translating the name bind-

ing for a, we bind two variables: a to the translated type, and a− to the type of the
corresponding private decryption key. We translate bindings as follows:

[[x:T ]]t = x:[[T ]]t

[[a:DSecret]]t = a:[[DSecret]]t

[[a:Public]]t = a:[[Public]]t, a−:[[Public]]t

[[a:CSecret[T1, . . . , Tn]]]t = a:[[CSecret[T1, . . . , Tn]]]t, a−:DK[list(SNonce, [[T1]]
t, . . . , [[Tn]]t)]

[[a:CPublic[T1, . . . , Tn]]]t = a:[[CPublic[T1, . . . , Tn]]]t, a−:DK[list(Public, [[T1]]
t, . . . , [[Tn]]t)]
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We let Γ0 be the intermediate-language environment that assigns types to the imple-
mentation channels net , ack , cont , export , import , and export i, import i, user i for
i = 1..n in such a way that Γ0 � I0. (The definition of Γ0 appears in the full version of
this paper.) We let [[E]]t be Γ0 plus the translations of the bindings in E.

The next lemma states that source subtyping is preserved, and that all type deriva-
tions for source terms and processes yield type derivations in the intermediate language.

Lemma 1 (Type preservation)

1. If T ≤ T ′ then [[T ]]t ≤ [[T ′]]t.
2. If E � M : T then [[E]]t � M : [[T ]]t.
3. If E � P , then [[E]]t � [[P ]].

We obtain:

Theorem 1. Let P =
∏

i=1..n Pi. Let the machines (Pi)i=0..n implement the source
processes (Pi)i=1..n with initialization parameters ã, ãRW , ãW , s̃.

Let E be the source typing environment that contains

– (s : DSecret) for each s ∈ s̃;
– (a : CSecret[T̃ ]) for each a ∈ ã \ ãW ;
– (a : CPublic[T̃ ]) for each a ∈ ãW ;
– (b : Public) for each b ∈ ãRW .

If E � P , then the concrete system (Pi,Mi)i=0..n preserves payload secrecy of s̃.

We illustrate the use of the theorem on the example of Section 3. We have established
that E � A |B. Let S be the system that includes machines (Pi)i=0,1,2 with initial-
ization parameters ã1 = {a}, ã2 = {b}, ã = {a, b}, b̃1 = {b, s}, b̃2 = {ack},
b̃ = {ack, s}, ãRW = {ack}, ãW = {a, b}, and s̃ = {s}, such that P1 hosts the
translation of A, P2 hosts the translation of B, and P0 runs the initialization process I0:

I0 = export1(a).export2(b).export〈a, b〉.import(ack).user(s).
cont( ).import1〈b, s〉.cont( ).import2〈ack〉

Since E meets the conditions of Theorem 1, system S preserves payload secrecy of s.

7 Types for Channel Groups

In this section, we supplement our type system with typing rules adapted from Cardelli
et al. [14]. These rules are also designed to ensure formal secrecy by typing, but they
concern symmetric communication channels, confined using scoped groups of names.
Relying on this confinement discipline, we can implement channels using symmetric
encryption, with computational secrecy guarantees.

Group Types in the Source Language. Group types embody static scoping policies
in the pi calculus; they help control the dynamic extrusion of channels by partitioning
them into named groups and statically controlling the scope of these groups. Groups
can be dynamically created as part of the computation; they ensure that “channels of
group G are forever secret outside the initial scope of (νG)” [14].
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We extend the grammars for source processes and types accordingly:

P,Q ::= processes
. . . (see Section 2)
M〈M1, . . . ,Mn〉s output
M(x1, . . . , xn)s.P input
!M(x1, . . . , xn)s.P replicated input
(νG)P group restriction
(νsa : G[T1, . . . , Tn])P restriction

T ::= types
. . . (see Section 3)
G[T1, . . . , Tn] channel in group G

We assume an infinite set of groups and let G, G′ range over groups. The process (νG)P
binds G with scope P . We consider processes up to renaming of bound groups.

The other processes enable communication and restriction on names that belong to
a group, much as the processes of Section 2, except for an additional “s” that indicates
the usage of group names (so that we can select symmetric-key cryptography in the
implementation). Restrictions also mention types, which are useful here for guiding the
translation.

Operationally, group restrictions behave like name restrictions, with similar structu-
ral-equivalence rules and an additional context rule for reductions: P → P ′ ⇒ (νG)P
→ (νG)P ′. Hence, group types do not play any dynamic role, and we can retrieve
untyped source processes and the untyped semantics by type erasure [14, Section 3].

We supplement our type system with additional typing rules for groups:

E 
 * G /∈ dom(E)

E,G 
 *
E 
 * G ∈ dom(E) u /∈ dom(E) E 
 T1, . . . , E 
 Tn

E,u : G[T1, . . . , Tn] 
 *
E 
M :G[T1, . . . , Tn] E, x1 : T1, . . . , xn : Tn 
 P

E 
!=M(x1, . . . , xn)s.P
(Input G)

E 
M :G[T1, . . . , Tn] ∀i ∈ {1, . . . , n}, E 
Mi : Ti

E 
M〈M1, . . . ,Mn〉s
(Output G)

E,G 
 P
E 
 (νG)P

(Group Restriction)
E, a :G[T1, . . . , Tn] 
 P
E 
 (νsa :G[T1, . . . , Tn])P

(Restriction G)

The well-formedness rules demand that all groups are recorded in E and group types
are not mutually recursive. Thus, (Group Restriction) ensures that a restricted G never
occurs in the type of a free variable.

The other rules are standard. In contrast with the rules for local channels, (Input G)
enables inputs on any term with a group type.

An Example. Consider the processes:

A = (νsd : G[DSecret])(c〈d〉s | d〈s1〉s | d〈s2〉s)
B = !c(z)s.z(x1)s.z(x2)s

Here, c represents a private, long-term channel between A and B, and d represents a
private channel for a session; A creates d in group G, sends it to B on c, and uses d to
send secrets s1 and s2 to B.

We can assign types so that (νG)(νsc : G[G[DSecret]])(A |B) typechecks, with s1

and s2 of type DSecret.
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Two Difficulties with Symmetric Encryption. Scoped group types are a good match
for symmetric keys, with their limitations. We discuss two such standard limitations in
the context of the intermediate language and the idealized cryptographic library.

– Encryption cycles may occur when the same symmetric keys are used both as en-
cryption keys and within encrypted values. Cycles are potentially unsafe, and there-
fore excluded by standard computational definitions of secrecy [7]. In particular,
cycles must be excluded in the cryptographic library [9], as follows: every secret
symmetric-key encryption has an integer rank, k, and the idealized library checks
that, for every encryption, (the symbolic representation of) the value to be encrypted
includes only encryptions of a strictly lower rank.

– Key compromises may occur during the computation, but they are hard to model
computationally. The cryptographic library simplifies the issue by requiring that
any symmetric key that may eventually be leaked to the adversary be leaked before
any encryption under the key becomes known by the adversary [9]. Laud’s type
system simplifies further, and excludes any leakage of symmetric keys by typing.

To address the second limitation, we extend the intermediate language, as follows.
By convention, we use rank 0 to indicate a key that is (immediately) leaked to the
adversary. We refine the rule (SK) for gen symenc key(k) [17]:

k ≥ 0

gen symenc key(k) : SKk[T ]
(SK)

into two rules:

gen symenc key(0) : Public
(PSK)

k > 0

gen symenc key(k) : SKk[T ]
(SK′)

The special typing rule for k = 0 is admissible1; indeed, Laud’s system already supports
symmetric keys of type Public received from the adversary.

Moreover, we assume that the library implementation of gen symenc key(k) detects
k = 0 and then leaks the key to the adversary, using some additional port. Technically,
we establish payload secrecy result for systems with this modification. However, it is
straightforward to show that, if a system preserves payload secrecy while leaking some
symmetric keys, then the same system without the leak also preserves payload secrecy.
(If an adversary breaks payload secrecy for the system without the leak, then the same
adversary breaks payload secrecy for the system with the leak—by just ignoring the
extra input.) This latter system does not dynamically rely on the rank parameters k.

Distributed Implementation. We describe the distributed implementation of source
processes with groups as an extension of the implementation of Section 5.

As a global, preliminary step, we partition the free groups of the source processes Pi

for i = 1, . . . , n into public and private groups, we rename the restricted groups so that
all groups are pairwise distinct, and we give a rank to every type: rank(G[T1, . . . , Tn]) =
1 + maxi=1..n(rank(Ti)) when G is private or restricted; all other types have rank 0.

1 P. Laud, private communication.
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We extend the translations for types and processes as follows:

[[G[T1, . . . , Tn]]]t =

{
Public when G public
SKrank(G[T1,...,Tn])[list([[T1]]

t, . . . , [[Tn]]t)] otherwise
[[M〈M1, . . . ,Mn〉s]] = cont( ).net〈privenc(M, list(M1, . . . ,Mn))〉

[[!=M(x1, . . . , xn)s.P ]] = !=net(z).let x1, . . . , xn = privdec(M, z) in ack〈 〉.[[P ]]
[[(νG)P ]] = [[P ]]

[[(νsa : T )P ]] = let a = gen symenc key(rank(T )) in [[P ]] else 0

The translation of environment is extended to group-type bindings pointwise, and
discards groups. As in Section 6, we show that our translation of processes is well-
typed. Initialization applies unchanged: we exchange private-group names in ã \ ãW

(just as names of type CSecret[T1, . . . , Tn]) and public-group names in ãRW .
Finally, we generalize Proposition 1, Lemma 1, and Theorem 1 to systems with

both kinds of channel implementations, with the additional requirement that, in the
top-level source environment, the types within public-group types be either Public or
other public-group types. (We leave details for the full version of this paper.)

8 Conclusion

In summary, we obtain computational secrecy guarantees for an implementation of a
standard process calculus with mobile channels. The guarantees apply to processes that
conform to typing disciplines originally designed for establishing formal secrecy. It is
pleasing that these typing disciplines have a strong, non-trivial computational meaning.
One may also be able to extend these results to other secrecy requirements. Further,
we expect that analogous results may be established for typing disciplines that enforce
authenticity [16] (as already suggested by Laud) and authorization [15]. In addition,
implementations such as the one considered in this paper can be hardened against many
kinds of attacks, whether or not the corresponding security properties are captured in
type systems. Unfortunately, however, some attractive extensions appear challenging.
For instance, protection against traffic analysis may require expensive implementation
strategies or changes in the source calculus [1, 8]. An interesting direction for further
research is the development of high-level models and calculi that would be both conve-
nient for programming and amenable to sound, efficient implementations.
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Abstract. The Scheme language report advocates language design as the com-
position of a small set of orthogonal constructs, instead of a large accumulation
of features. In this paper, we demonstrate how such a design scales with the ad-
dition of a class system to Scheme. Specifically, the PLT Scheme class system
is a collection of orthogonal linguistic constructs for creating classes in arbitrary
lexical scopes and for manipulating them as first-class values. Due to the smooth
integration of classes and the core language, programmers can express mixins
and traits, two major recent innovations in the object-oriented world. The class
system is implemented as a macro in terms of procedures and a record-type gen-
erator; the mixin and trait patterns, in turn, are naturally codified as macros over
the class system.

1 Growing a Language

The Revised5 Report on the Scheme programming language [20] starts with the famous
proclamation that “[p]rogramming languages should be designed not by piling feature
on top of feature, but by removing the weaknesses and restrictions that make additional
features appear necessary.” As a result, Scheme’s core expression language consists
of just six constructs: variables, constants, conditionals, assignments, procedures, and
function applications. Its remaining constructs implement variable definitions and a few
different forms of procedure parameter specifications. Everything else is defined as a
function or macro.

PLT Scheme [25], a Scheme implementation intended for language experimenta-
tion, takes this maxim to the limit. It extends the core of Scheme with a few constructs,
such as modules and generative structure definitions, and provides a highly expressive
macro system. Over the past ten years, we have used this basis to conduct many lan-
guage design experiments, including the development of an expressive and practical
class system. We have designed and implemented four variants of the class system, and
we have re-implemented DrScheme [13]—a substantial application of close to 200,000
lines of PLT Scheme code—in terms of this class system as many times.

Classes in PLT Scheme are first-class values, and the class system’s scoping rules
are consistent with Scheme’s lexical scope and single namespace. Furthermore, the
class system serves as a foundation for further macro-based explorations into class-like
mechanisms, such as mixins and traits.

A mixin [11] is a class declaration parameterized over its superclass using lambda.
Years of experience with these mixins shows that they are practical. Scoping rules for

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 270–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



methods allow both flexibility and control in combining mixins, while explicit inheri-
tance specifications ensure that unintentional collisions are flagged early.

In this setting, a trait [29] is a set of mixins. Although mixins and traits both rep-
resent extensions to a class, we distinguish traits from mixins, because traits provide
fine-grained control over individual methods in the extension, unlike mixins.

Last but not least, objects instantiated by the class system are efficient in space and
time, whether the class is written directly or instantiated through mixins and or traits.
In particular, objects in our system consume a similar amount of space to a Smalltalk
or Java object. Method calls have a cost similar to Smalltalk method calls or interface-
based Java calls. In short, the class system is efficient as well as effective.

2 Classes

In PLT Scheme, a class expression denotes a first-class value, just like a lambda
expression:

(class superclass-expr decl-or-expr∗)

The superclass-expr determines the superclass for the new class. Each decl-or-expr is
either a declaration related to methods, fields, and intialization arguments, or it is an
expression that is evaluated each time that the class is instantiated. In other words,
instead of a method-like constructor, a class has initialization expressions interleaved
with field and method declarations. Figure 1 displays a simplified grammar for decl-or-
expr.

By convention, class names end with %. The built-in root class is object%. Thus the
following expression creates a class with public methods get-size , grow , and eat :

(class object%

(init size) ; initialization argument

(define current-size size) ; field

(super-new) ; superclass initialization

(define/public (get-size)

current-size)

(define/public (grow amt)

(set! current-size (+ amt current-size)))

(define/public (eat other-fish)

(grow (send other-fish get-size))))

The size initialization argument must be supplied via a named argument when instan-
tiating the class through the new form:

(new (class object% (init size) ...) [size 10])

Of course, we can also name the class and its instance:

(define fish% (class object% (init size) ...))

(define charlie (new fish% [size 10]))

In the definition of fish% , current-size is a private field that starts out with the value
of the size initialization argument. Initialization arguments like size are available
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decl-or-expr ::= (define id expr) private field definition
| (define/method-spec (method-id id∗)

expr∗)
method definition

| (init id-with-expr∗) initialization argument
| (field id-with-expr∗) public field
| (inherit method-id∗) inherit method, for direct access
| expr initialization expression

method-spec ::= public new method
| override override method
| private private method

id-with-expr ::= id without initial value or default
| [id expr] with initial value or default

expr ::= (new class-expr [id expr]∗) object creation
| (send object-expr method-id expr∗) external method call
| (method-id expr∗) internal method call (in class)
| this object self-reference (in class)
| (super method-id expr∗) call overridden method (in class)
| (super-new [id expr]∗) call super initialization (in class)
| . . . all other Scheme expression forms

superclass-expr, class-expr, and object-expr are aliases for expr; method-id is an alias for id

Fig. 1. Simplified PLT Scheme class system grammar

only during class instantiation, so they cannot be referenced directly from a method.
The current-size field, in contrast, is available to methods.

The (super-new) expression in fish% invokes the initialization of the superclass.
In this case, the superclass is object%, which takes no initialization arguments and
performs no work; super-new must be used, anyway, because a class must always
invoke its superclass’s initialization.

Initialization arguments, field declarations, and expressions such as (super-new)
can appear in any order within a class, and they can be interleaved with method decla-
rations. The relative order of expressions in the class determines the order of evaluation
during instantiation. For example, if a field’s initial value requires calling a method that
works only after superclass initialization, then the field declaration is placed after the
super-new call. Ordering field and initialization declarations in this way helps avoid
imperative assignment. The relative order of method declarations makes no difference
for evaluation, because methods are fully defined before a class is instantiated.

2.1 Methods

Each of the three define/public declarations in fish% introduces a new method. The
declaration uses the same syntax as a Scheme function, but a method is not accessible
as an independent function. A call to the grow method of a fish% object requires the
send form:

(send charlie grow 6)

(send charlie get-size) ; ⇒ 16
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Within fish% , self methods can be called like functions, because the method names
are in scope. For example, the eat method within fish% directly invokes the grow

method. Within a class, attempting to use a method name in any way other than a
method call results in a syntax error.

In some cases, a class must call methods that are supplied by the superclass but not
overridden. In that case, the class can use send with this to access the method:

(define hungry-fish% (class fish% (super-new)

(define/public (eat-more fish1 fish2)

(send this eat fish1)

(send this eat fish2))))

Alternately, the class can declare the existence of a method using inherit, which
brings the method name into scope for a direct call:

(define hungry-fish% (class fish% (super-new)

(inherit eat)

(define/public (eat-more fish1 fish2)

(eat fish1) (eat fish2))))

With the inherit declaration, if fish% had not provided an eat method, an error
would be signaled in the evaluation of the class form for hungry-fish% . In contrast,
with (send this ...), an error would not be signaled until the eat-more method is
called and the send form is evaluated. For this reason, inherit is preferred.

Another drawback of send is that it is less efficient than inherit. Invocation of a
method via send involves finding a method in the target object’s class at run time, mak-
ing send comparable to an interface-based method call in Java. In contrast, inherit-
based method invocations use an offset within the class’s method table that is computed
when the class is created.

To achieve performance similar to inherit-based method calls when invoking
a method from outside the method’s class, the programmer must use the generic
form, which produces a class- and method-specific generic method to be invoked with
send-generic:

(define get-fish-size (generic fish% get-size))

(send-generic charlie get-fish-size) ; ⇒ 16

(send-generic (new hungry-fish% [size 32]) get-fish-size) ; ⇒ 32

(send-generic (new object%) get-fish-size) ; Error: not a fish%

Roughly speaking, the form translates the class and the external method name to a
location in the class’s method table. As illustrated by the last example, sending through
a generic method checks that its argument is an instance of the generic’s class.

Whether a method is called directly within a class, through a generic method, or
through send, method overriding works in the usual way:

(define picky-fish% (class fish% (super-new)

(define/override (grow amt)

;; Doesn’t eat all of its food

(super grow (∗ 3/4 amt)))))

(define daisy (new picky-fish% [size 20]))

(send daisy eat charlie) ; charlie ’s size is 16

(send daisy get-size) ; ⇒ 32
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The grow method in picky-fish% is declared with define/override instead of
define/public, because grow is meant as an overriding declaration. If grow had been
declared with define/public, an error would have been signaled when evaluating the
class expression, because fish% already supplies grow .

Using define/override also allows the invocation of the overridden method via
a super call. For example, the grow implementation in picky-fish% uses super to
delegate to the superclass implementation.

2.2 Initialization Arguments

Since picky-fish% declares no initialization arguments, any initialization values sup-
plied in (new picky-fish% ...) are propagated to the superclass initialization, i.e.,
to fish% . A subclass can supply additional initialization arguments for its superclass
in a super-new call, and such initialization arguments take precedence over arguments
supplied to new. For example, the following size-10-fish% class always generates
fish of size 10:

(define size-10-fish% (class fish% (super-new [size 10])))

(send (new size-10-fish%) get-size) ; ⇒ 10

In the case of size-10-fish% , supplying a size initialization argument with new
would result in an initialization error; because the size in super-new takes prece-
dence, a size supplied to new would have no target declaration.

An initialization argument is optional if the class form declares a default value.
For example, the following default-10-fish% class accepts a size initialization
argument, but its value defaults to 10 if no value is supplied on instantiation:

(define default-10-fish% (class fish%

(init [size 10])

(super-new [size size])))

(new default-10-fish%) ; ⇒ a fish of size 10

(new default-10-fish% [size 20]) ; ⇒ a fish of size 20

In this example, the super-new call propagates its own size value as the size initial-
ization argument to the superclass.

2.3 Internal and External Names

The two uses of size in default-10-fish% expose the double life of class-member
identifiers. When size is the first identifier of a bracketed pair in new or super-new,
size is an external name that is symbolically matched to an initialization argument in
a class. When size appears as an expression within default-10-fish% , size is an
internal name that is lexically scoped. Similarly, a call to an inherited eat method uses
eat as an internal name, whereas a send of eat uses eat as an external name.

The full syntax of the class form allows a programmer to specify distinct internal
and external names for a class member. Since internal names are local, they can be α-
renamed to avoid shadowing or conflicts. Such renaming is not frequently necessary,
but workarounds in the absence of α-renaming can be especially cumbersome.
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2.4 Interfaces

Interfaces are useful for checking that an object or a class implements a set of methods
with a particular (implied) behavior. This use of interfaces is helpful even without a
static type system (which is the main reason that Java has interfaces).

An interface in PLT Scheme is created using the interface form, which merely
declares the method names required to implement the interface. An interface can ex-
tend other interfaces, which means that implementations of the interface automatically
implement the extended interfaces.

(interface (superinterface-expr∗) id∗)

To declare that a class implements an interface, the class∗ form must be used instead
of class:

(class∗ superclass-expr (interface-expr∗) decl-or-expr∗)

For example, instead of forcing all fish classes to be derived from fish% , we can
define fish-interface and change the fish% class to declare that it implements
fish-interface :

(define fish-interface (interface () get-size grow eat))

(define fish% (class∗ object% (fish-interface) ...))

If the definition of fish% does not include get-size , grow , and eat methods, then
an error is signaled in the evaluation of the class∗ form, because implementing the
fish-interface interface requires those methods.

The is-a? predicate accepts either a class or interface as its first argument and an
object as its second argument. When given a class, is-a? checks whether the object
is an instance of that class or a derived class. When given an interface, is-a? checks
whether the object’s class implements the interface. In addition, the implementation?
predicate checks whether a given class implements a given interface.

2.5 Final, Augment, and Inner

As in Java, a method in a class form can be specified as final, which means that a
subclass cannot override the method. A final method is declared using public-final
or override-final, depending on whether the declaration is for a new method or an
overriding implementation.

Between the extremes of allowing arbitrary overriding and disallowing overrid-
ing entirely, the class system also supports Beta-style augmentable methods [22]. A
method declared with pubment is like public, but the method cannot be overridden
in subclasses; it can be augmented only. A pubment method must explicitly invoke an
augmentation (if any) using inner; a subclass augments the method using augment,
instead of override.

In general, a method can switch between augment and override modes in a class
derivation. The augride method specification indicates an augmentation to a method
where the augmentation is itself overrideable in subclasses (though the superclass’s
implementation cannot be overridden). Similarly, overment overrides a method and
makes the overriding implementation augmentable. Our earlier work [19] motivates
and explains these extensions and their interleaving.
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2.6 Controlling the Scope of External Names

As noted in Section 2.3, class members have both internal and external names. A mem-
ber definition binds an internal name locally, and this binding can be locally α-renamed.
External names, in contrast, have global scope by default, and a member definition does
not bind an external name. Instead, a member definition refers to an existing binding for
an external name, where the member name is bound to a member key; a class ultimately
maps member keys to methods, fields, and initialization arguments.

Recall the hungry-fish% class expression:

(define hungry-fish% (class fish% ...

(inherit eat)

(define/public (eat-more fish1 fish2)

(eat fish1) (eat fish2))))

During its evaluation, the hungry-fish% and fish% classes refer to the same global
binding of eat . At run time, calls to eat in hungry-fish% are matched with the eat
method in fish% through the shared method key that is bound to eat .

The default binding for an external name is global, but a programmer can introduce
an external-name binding with the define-member-name form.

(define-member-name id member-key-expr)

In particular, by using (generate-member-key) as the member-key-expr, an exter-
nal name can be localized for a particular scope, because the generated member key is
inaccessible outside the scope. In other words, define-member-name gives an exter-
nal name a kind of package-private scope, but generalized from packages to arbitrary
binding scopes in Scheme.

For example, the following fish% and pond% classes cooperate via a get-depth
method that is only accessible to the cooperating classes:

(define-values (fish% pond%) ;; two mutually recursive classes

(let () ; create a local definition scope

(define-member-name get-depth (generate-member-key))

(define fish%

(class ... (define my-depth ...)

(define my-pond ...)

(define/public (dive amt)

(set! my-depth

(min (+ my-depth amt)

(send my-pond get-depth))))))

(define pond%

(class ... (define current-depth ...)

(define/public (get-depth) current-depth)))

(values fish% pond%)))

External names are in a namespace that separates them from other Scheme names. This
separate namespace is implicitly used for the method name in send, for initialization-
argument names in new, or for the external name in a member definition. The special
member-name-key provides access to the binding of an external name in an arbitrary
expression position: (member-name-key id) form produces the member-key binding
of id in the current scope.
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A member-key value is primarily used on with a define-member-name form. Nor-
mally, then, (member-name-key id) captures the method key of id so that it can be
communicated to a use of define-member-name in a different scope. This capability
turns out to be useful for generalizing mixins (see Section 3.4).

2.7 Implementation of Classes

The class form is implemented in terms of a primitive make-struct-type procedure,
which generates a data type that is distinct from all existing data types. The new data
type’s specification includes the number of slots that should be allocated for instances
of the data type, plus properties for the data type. A class corresponds to a fresh data
type with one slot for each field and with a property for the class’s method table.

Most of the compile-time work for the class macro is in expanding the individual
expressions and declarations in the method body, and ensuring that the declarations are
locally consistent (e.g., no duplicate method declarations). Indeed, of the roughly 3,500
lines of Scheme code that implement the class system, 3/4 implement compile-time
work (especially syntax checking to provide good error messages), and 1/4 of the lines
implement run-time support.

The run-time representation of a class includes the method implementations—as
procedures transformed to take an explicit this argument—and information about in-
troduced methods and expected superclass methods. The run-time work of class cre-
ation mostly checks the consistency of the class extensions with a supplied superclass,
closes the method implementations with specific methods for super calls, and closes
method implementations with specific vtable indices for direct method calls.

3 Mixins

Since class is an expression form instead of a top-level declaration as in Smalltalk and
Java, a class form can be nested inside any lexical scope, including lambda. The result
is a mixin, i.e., a class extension that is parameterized with respect to its superclass [11].

For example, we can parameterize the picky-fish% class over its superclass to
define picky-mixin :

(define (picky-mixin %)

(class % (super-new)

(define/override (grow amt) (super grow (∗ 3/4 amt)))))

(define picky-fish% (picky-mixin fish%))

Many small differences between Smalltalk-style classes and our classes contribute to
the effective use of mixins. In particular, the use of define/override makes explicit
that picky-mixin expects a class with a grow method. If picky-mixin is applied to
a class without a grow method, an error is signaled as soon as picky-mixin is applied.

Similarly, a use of inherit enforces a “method existence” requirement when the
mixin is applied:

(define (hungry-mixin %)

(class % (super-new)

(inherit eat)

(define/public (eat-more fish1 fish2) (eat fish1) (eat fish2))))
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The advantage of mixins is that we can easily combine them to create new classes
whose implementation sharing does not fit into a single-inheritance hierarchy—without
the ambiguities associated with multiple inheritance. Equipped with picky-mixin and
hungry-mixin , creating a class for a hungry, yet picky fish is straightforward:

(define picky-hungry-fish% (hungry-mixin (picky-mixin fish%)))

The use of keyword initialization arguments is critical for the easy use of mixins.
For example, picky-mixin and hungry-mixin can augment any class with suitable
eat and grow methods, because they do not specify initialization arguments and add
none in their super-new expressions:

(define person% (class object%

(init name age)

...

(define/public (eat food) ...)

(define/public (grow amt) ...)))

(define child% (hungry-mixin (picky-mixin person%)))

(define oliver (new child% [name "Oliver"][age 6]))

Finally, the use of external names for class members (instead of lexically scoped iden-
tifiers) makes mixin use convenient. Applying picky-mixin to person% works be-
cause the names eat and grow match, without any a priori declaration that eat and
grow should be the same method in fish% and person% . This feature is a potential
drawback when member names collide accidentally; some accidental collisions can be
corrected by limiting the scope external names, as discussed in Section 2.6.

3.1 Mixins and Interfaces

Using implementation?, picky-mixin could require that its base class implements
grower-interface , which could be implemented by both fish% and person% :

(define grower-interface (interface () grow))

(define (picky-mixin %)

(unless (implementation? % grower-interface)

(error "picky-mixin: not a grower-interface class"))

(class % ...))

Another use of interfaces with a mixin is to tag classes generated by the mixin, so that
instances of the mixin can be recognized. In other words, is-a? cannot work on a
mixin represented as a function, but it can recognize an interface (somewhat like a spe-
cialization interface [21]) that is consistently implemented by the mixin. For example,
classes generated by picky-mixin could be tagged with picky-interface , enabling
the is-picky? predicate:

(define picky-interface (interface ()))

(define (picky-mixin %)

(unless (implementation? % grower-interface)

(error "picky-mixin: not a grower-interface class"))

(class∗ % (picky-interface) ...))

(define (is-picky? o)

(is-a? o picky-interface))
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3.2 The Mixin Macro

To codify the lambda-plus-class pattern for implementing mixins, including the use of
interfaces for the domain and range of the mixin, PLT Scheme’s class system provides
a mixin macro:

(mixin (interface-expr∗) (interface-expr∗) decl-or-expr∗)

The first set of interface-exprs determines the domain of the mixin, and the second set
determines the range. That is, the expansion is a function that tests whether a given
base class implements the first sequence of interface-exprs and produces a class that
implements the second sequence of interface-exprs. Other requirements, such as the
presence of inherited methods in the superclass, are then checked for the class
expansion of the mixin form.

3.3 Mixins, Augment, and Inner

Mixins not only override methods and introduce public methods, they can also augment
methods, introduce augment-only methods, add an overrideable augmentation, and add
an augmentable override — all of the things that a class can do (see Section 2.5).

Bracha and Cook [11] observed that mixins alone can express both Smalltalk-style
method overriding and Beta-style method augmenting, depending on the order of mixin
composition. Their result, however, depends on choosing an order of composition; oth-
erwise, the security benefits of Beta-style augmenting are lost (as we have observed [19]
to be the case for gbeta). Our goal in adding augment and inner to the class system is
to provide the same sort of security guarantees as Beta, which explains why we imple-
ment mixins in terms of classes, not classes in terms of mixins.

3.4 Parameterized Mixins

As noted in Section 2.6, external names can be bound with define-member-name.
This facility allows a mixin to be generalized with respect to the methods that it defines
and uses. For example, we can parameterize hungry-mixin with respect to the external
member key for eat :

(define (make-hungry-mixin eat-method-key)

(define-member-name eat eat-method-key)

(mixin () () (super-new)

(inherit eat)

(define/public (eat-more x y) (eat x) (eat y))))

To obtain a particular hungry-mixin, we must apply this function to a member key that
refers to a suitable eat method, which we can obtain using member-name-key:

((make-hungry-mixin (member-name-key eat))

(class object% ... (define/public (eat x) ’yum)))

Above, we apply hungry-mixin to an anonymous class that provides eat , but we can
also combine it with a class that provides chomp , instead:
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4 Traits

A trait [28, 29] is similar to a mixin, in that it encapsulates a set of methods to be added
to a class. A trait is different from a mixin in that its individual methods can be ma-
nipulated with trait operators such as sum (merge the methods of two traits), exclude
(remove a method from a trait), and alias (add a copy of a method with a new name;
do not redirect any calls to the old name). The practical difference between mixins and
traits is that two traits can be combined, even if they include a common method and
even if neither method can sensibly override the other. In that case, the programmer
must explicitly resolve the collision, usually by aliasing methods, excluding methods,
and merging a new trait that uses the aliases.

Suppose our fish% programmer wants to define two class extensions, spots and
stripes , each of which includes a get-color method. The fish’s spot color should
not override the stripe color nor vice-versa; instead, a spots+stripes-fish% should
combine the two colors, which is not possible if spots and stripes are implemented
as plain mixins. If, however, spots and stripes are implemented as traits, they can be
combined. First, we alias get-color in each trait to a non-conflicting name. Second,
the get-color methods are removed from both and the traits with only aliases are
merged. Finally, the new trait is used to create a class that introduces its own get-color
method based on the two aliases, producing the desired spots+stripes extension.

4.1 Traits as Sets of Mixins

One natural approach to implementing traits in PLT Scheme is as a set of mixins, with
one mixin per trait method. For example, we might attempt to define the spots and
stripes traits as follows, using association lists to represent sets:

(define spots-trait

(list (cons ’get-color

(lambda (%) (class % (super-new)

(define/public (get-color) ’black))))))

(define stripes-trait

(list (cons ’get-color

(lambda (%) (class % (super-new)

(define/public (get-color) ’red))))))

A set representation, such as the above, allows sum and exclude as simple manipula-
tions; unfortunately, it does not support the alias operator. Although a mixin can be
duplicated in the association list, the mixin has a fixed method name, e.g., get-color ,
and mixins do not support a method-rename operation. To support alias, we must pa-
rameterize the mixins over the external method name in the same way that eat was
parameterized in Section 3.4.

((make-hungry-mixin (member-name-key chomp))

(class object% ... (define/public (chomp x) ’yum)))
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4.2 Traits as Parameterized Mixins

To support the alias operation, spots-trait should be represented as:

(define spots-trait

(list (cons (member-name-key get-color)

(lambda (get-color-key %)

(define-member-name get-color get-color-key)

(class % (super-new)

(define/public (get-color) ’black))))))

When the get-color method in spots-trait is aliased to get-trait-color and
the get-color method is removed, the resulting trait is the same as

(list (cons (member-name-key get-trait-color)

(lambda (get-color-key %)

(define-member-name get-color get-color-key)

(class % (super-new)

(define/public (get-color) ’black))))))

To apply a trait T to a class C and obtain a derived class, we use (apply-trait T C).
The apply-trait function supplies each mixin of T the key for the mixin’s method
and a partial extension of C :

(define (apply-trait T C)

(foldr (lambda (m %) ((cdr m) (car m) %)) C T))

Thus, when the trait above is combined with other traits and then applied to a class, the
use of get-color becomes a reference to the external name get-trait-color .

4.3 Inherit and Super in Traits

This first implementation of traits supports alias, and it supports a trait method that
calls itself, but it does not support trait methods that call each other. In particular, sup-
pose that a spot-fish’s market value depends on the color of its spots:

(define spots-trait

(list (cons (member-name-key get-color) ...)

(cons (member-name-key get-price)

(lambda (get-price %) ...

(class % ...

(define/public (get-price) ... (get-color) ...))))))

In this case, the definition of spots-trait fails, because get-color is not in scope
for the get-price mixin. Indeed, depending on the order of mixin application when
the trait is applied to a class, the get-color method may not be available when
get-price mixin is applied to the class. Therefore adding an (inherit get-color)
declaration to the get-price mixin does not solve the problem.

One solution is to require the use of (send this get-color) in methods such as
get-price . This change works because send always delays the method lookup until
the method call is evaluated. The delayed lookup is more expensive than a direct call,
however. Worse, it also delays checking whether a get-color method even exists.
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A second, effective, and efficient solution is to change the encoding of traits. Specif-
ically, we represent each method as a pair of mixins: one that introduces the method and
one that implements it. When a trait is applied to a class, all of the method-introducing
mixins are applied first. Then the method-implementing mixins can use inherit to
directly access any introduced method.

(define spots-trait

(list (list (local-member-name-key get-color)

(lambda (get-color get-price %) ...

(class % ...

(define/public (get-color) (void))))

(lambda (get-color get-price %) ...

(class % ...

(define/override (get-color) ’black))))

(list (local-member-name-key get-price)

(lambda (get-price get-color %) ...

(class % ...

(define/public (get-price) (void))))

(lambda (get-color get-price %) ...

(class % ...

(inherit get-color)

(define/override (get-price)

... (get-color) ...))))))

With this trait encoding, alias works as in the Squeak implementation of traits. It adds
a new method with a new name, but it does not change any references to the old method.

In contrast to the Squeak implementation [28], we can easily support a rename
operation for traits with a bit of additional external-name parameterizations. Indeed,
our rename operation even works for references in inherit and send.

Properly supporting super calls within a trait requires relatively little work when
each super call to a method appears in an overriding implementation for the same
method. In that case, no method-introducing mixin is needed, since overriding implies
that the method exists already in the superclass. Special care is required if a super
call is allowed in a method other than an overriding implementation, and a cycle of
mutually super-calling methods may require an indirection to prevent a super call
from accessing an implementation in the trait instead of the base class. Fortunately, the
trait-application operator can generate this indirection automatically.

4.4 The Trait Macro

The general-purpose trait pattern is clearly too complex for a programmer to use di-
rectly, but it is easily codified in a trait macro:

(trait (inherit id∗)? (define/method-spec (id id∗) expr∗)∗)

The ids in the optional inherit clause are available for direct reference in the method
exprs, and they must be supplied either by other traits or the base class to which the trait
is ultimately applied.

Using this form in conjunction with trait operators such as sum, exclude, alias,
and apply-trait, we can implement spots-trait and stripes-trait as desired;
see Figure 2.
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(define spots-trait

(trait

(define/public (get-color) ’black)

(define/public (get-price) ... (get-color) ...)))

(define stripes-trait

(trait

(define/public (get-color) ’red)))

(define spots+stripes-trait

(sum (exclude (alias spots-trait get-color get-spots-color)

get-color)

(exclude (alias stripes-trait get-color get-stripes-color)

get-color)

(trait

(inherit get-spots-color get-stripes-color)

(define/public (get-color)

... (get-spots-color) ... (get-stripes-color) ...))))

Fig. 2. An example use of full-fledged traits

Fig. 3. PLT Scheme architecture

5 History and Experience

DrScheme is the most recognizable application that is built with PLT Scheme, and its
implementation makes extensive use of the class system. Figure 3 shows how DrScheme
fits into the architecture of PLT Scheme. MzScheme is the core compiler and run-time
system, analogous to the JVM for Java. MrEd is the core GUI layer, analogous to AWT
for Java. The application framework provides skeleton classes for typical kinds of GUI
applications. Finally, DrScheme supports plug-in tools that extend the programming
environment. (Ellipses in the figure represent other PLT libraries and applications.)

The language, kernel, and programming environment are sometimes difficult to dis-
tinguish, in part because they reinforce each other: MzScheme and MrEd were created
as a platform to build DrScheme, and many programmers now choose PLT Scheme
specifically because it is supported by DrScheme. Nevertheless, the distinctions are
useful for understanding the uses of classes in DrScheme’s implementation.

applications

libraries

kernel

... tool tool ...

... DrScheme ...

... App Framework ...

... MrEd (GUI) ...

MzScheme
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5.1 Current Uses of Classes

DrScheme employs classes primarily for its graphical interface, since the benefits of
class-oriented programming are well understood for GUIs. In particular, the MrEd layer
exports a class- and interface-based API for GUI programming, and it uses mixins in-
ternally to build most of the widget classes. The application framework layer exports
a class-, interface-, and mixin-based API; the framework even includes classes with
overrideable methods that act as mixins.

DrScheme’s editor classes demonstrate many typical uses of classes and mixins. An
editor represents the content of a window with interactive text and images:

Editors in MrEd Every editor implements the editor<%> interface, which has
two base implementations: the text% class for a text-oriented, line-based layout, and
the pasteboard% class for a free-form, two-dimensional layout.

The text% and pasteboard% classes are derived from more primitive, private vari-
ants wx-text% and wx-pasteboard% . The wx- variants share a superclass that im-
plements common behavior at the primitive level, but text% and pasteboard% also
share behavior that cannot be implemented in the primitive layer. Instead of duplicating
refinements of wx-text% and wx-pasteboard% , the common refinements are imple-
mented once in an internal mixin, thus creating a single point of control for shared
behavior in text% and pasteboard% .

The text% and pasteboard% classes cooperate with the editor-canvas% class,
which is instantiated to display an editor. Locally scoped external names serve the same
role as package-private declarations to hide methods that are required for this inter-class
cooperation.

Although most methods of text% and pasteboard% are overrideable, a few are
augmentable only. For example, the can-insert? method is called before any in-
sertion attempt to determine whether the editor can be modified. This method is aug-
mentable only, which prevents a subclass from allowing insertions if a superclass (pos-
sibly defined by a more primitive layer) must disallow insertions to preserve invariants.
Editors in the Framework The application framework provides several editor
mixins, such as an autosave mixin, a mixin to display editor state (such as the current
line and column) into an information panel, and a mixin for chaining keymaps together.
The framework also supplies nearly a dozen mixins that are specific to text% . The
framework’s top-level window class includes get-editor% and get-canvas% meth-
ods, so that a mixin for top-level windows can consistently extend the editor and canvas
classes that are created for the window.

Certain editor and text mixins cooperate with a corresponding mixin for the dis-
play canvas. So far, we have mostly relied on naming conventions and run-time checks
to help keep mixin applications in sync; we are considering implementing mixin lay-
ers [30] (via macros) for this purpose.
Editors in DrScheme A tool that extends to the DrScheme programming envi-
ronment is implemented as a unit [16]. DrScheme supplies each tool unit with functions
to register mixin refinements of its editors. That is, tool implementors get the same con-
venient API as the DrScheme implementors for extending the environment, even though
tools can be mixed and matched in a given installation.
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Fig. 4. PLT Scheme class system timeline

5.2 Language Evolution

Figure 4 shows how the class system in PLT Scheme has evolved over the project’s 11-
year history. To create the initial GUI base for DrScheme, we combined an embeddable
Scheme system, libscheme [8], with a C++-based multi-platform GUI library, wxWin-
dows [31]. We also added our own C++-based editor classes, which is why the GUI
layer is called “MrEd.” To make the C++ classes available in Scheme (for both class
extension and instantiation), we extended libscheme with a built-in object system. As
our changes to libscheme accumulated, we renamed it “MzScheme.”

Our earliest design for classes included support for both mixins (as class plus
lambda) and multiple inheritance of classes. We soon abandoned multiple inheritance,
since it was rarely used, whereas mixins took hold early in our libraries.

For the first major re-design, we introduced the distinction between public meth-
ods and override methods. This avoided occasional confusion where a mixin applica-
tion that was intended to introduce a method would instead override an existing method.

Through the first two major design stages, the class system implemented objects
as records of closures, where a method is represented as a closure with this as a free
variable. Such records are a typical way to represent objects in Scheme, and it worked
well enough when objects were used in small quantities, such as objects for windows,
buttons, and drawing pens. Over time, the addition of new kinds of snips to the edi-
tors, especially the nesting of text objects inside of editors, caused an overwhelming
consumption of space and time.

The third major design abandoned methods as closures over this in favor of a more
Smalltalk-like implementation where an object is a record of field values, plus a class-
specific table of method procedures that accept an implicit this argument. This change
eliminated performance problems related to the size of text objects in editors.

The third design also introduced by-name initialization arguments as an alternative
to by-position arguments. As noted in Section 3, named initialization arguments com-
plement mixin composition; in contrast, by-position arguments often force mixins to
provide imperative initialization methods, since there is no simple way to distinguish
optional initialization arguments for the mixin from initialization arguments intended
for the superclass. In the current design, both forms of initialization arguments remain,
but by-position arguments are used only in older libraries.

The first two implementations of classes were built into the language kernel. The
implementation of the third design was greatly facilitated by MzScheme’s switch from
traditional Lisp macros to a modular macro system based on syntax-case [12, 15],
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so that the class system could be implemented through macros instead of built into the
kernel.

The relative ease of changing the macro-based implementation enabled the most
recent major change to the class system, which was the addition of augment and
inner. The change was motivated by bugs due to incorrect overriding of methods like
can-insert? , especially within tools that extend DrScheme.

5.3 Open Issues

The PLT Scheme class system has evolved in response to ever more stringent require-
ments for stability, performance, and expressiveness. The regularity of events in Fig-
ure 4 is surprising—the tick marks correspond to actual dates when changes became
widely deployed to users—but they match the consistent growth of PLT Scheme. Pre-
dicting further change (and, apparently, its timing) is easier than predicting the specific
nature of the change, but several open issues are likely to attract attention.

The class forms’s distinction between initialization arguments and fields makes
explicit that values used only for initialization need not be stored in the object. Never-
theless, initialization arguments often turn into fields, and there seems to be no advan-
tage in forcing programmers to explicitly designate such conversions; merely referenc-
ing an initialization argument from a method should be enough to convert it to a field.
Automatic conversion, however, requires expanding all subexpressions when expand-
ing a class form, but the class form needs to expand sub-expressions differently for
fields than for initialization arguments. In other words, our macro technology affects
our language design (in much the same way that parsing and type-checking concerns
sometimes influence the outcome of other language design decisions).

In a similar vein, the class system prohibits an internal reference to a method that
is not in an application position (i.e., as a method call). Occasionally, we would like
to pass a method as a first-class value to functionals such as map . In this case, the
class macro could easily convert the method to a closure over this; we instead force
programmers to wrap the method with a lambda so that the closure allocation is more
apparent. We may reconsider this design decision.

The run-time cost of object instantiation is higher than it should be. For an object
with two initialization arguments that are both converted to fields, the instantiation time
is a factor of 20 slower than for a comparable PLT Scheme record. The difference is in
gathering and finding initializations arguments by name (which accounts for a factor of
10) and copying saved initialization arguments into fields (remaining factor of 2). One
possible solution is to provide a form for specializing new in much the same way that
send-generic specializes send.

Like most class systems, the PLT Scheme system conflates implementation inheri-
tance and interface inheritance. That is, a subclass automatically implements any inter-
face that its superclass implements. We are in a good position to try detaching interface
inheritance from subclassing, but we have not yet explored that possibility.

Finally, although we have designed a class system that supports mixins and traits as
separate extensions, the class system itself includes many built-in features that seem or-
thogonal: initialization protocols, several method overriding and augmenting protocols,
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and both implementation and interface inheritance. Future work may uncover ways to
remove weaknesses and restrictions, making our little pile of features even smaller.

6 Related Work on Classes in Scheme

Our approach of adding objects to Scheme closely resembles Friedman’s [18] object-
oriented style, but it also differs significantly from his work. The key difference con-
cerns the instantiation of classes, which we separate from the macro expansion phase.
Instead of specifying a class’s method statically, we rely on a run-time computation to
completely determine a class’s shape. As a result, combining our class with lambda
defines mixins that work on varieties of superclass shapes.

Historically, implementors of class systems for Scheme have used the message-
passing metaphor literally, representing an object as a procedure that accepts a method-
selecting symbol [1, 2]. More generally, Scheme programmers are often tempted to
think of an object as a collection of closures, where this is built into each method’s
closure instead of passed as an (implicit) argument. Unfortunately, the cost of this per-
object representation depends on the number of methods the object supports, instead of
just the number of fields. In our experience, the extra overhead is bearable when classes
are used sparingly, but it becomes overwhelming otherwise.

Finally, the CLOS approach to classes is relatively popular in Scheme, e.g., the
Meroon library [26] or Barzilay’s Swindle library [7]. In contrast to Smalltalk-style
classes, where behaviors are added by changing a class or deriving a new subclass,
behavioral extensions in CLOS are attached to generic methods. An advantage of this
approach is that it provides a clear path for adding “methods” to existing data types,
including primitive types like numbers and strings. Another advantage is that it gen-
eralizes well to multi-method dispatch, which can easily specialize an operation to a
particular combination of classes. A major drawback is that it encourages an impera-
tive programming style, where generic methods are mutated to add new class-specific
implementations.

7 Related Work on Mixins and Traits

The terms mixin and trait have a somewhat troubled and intertwined history, making
comparisons among “mixin” and “trait” systems potentially confusing. In this paper, we
have committed to particular definitions of the terms, and in the following comparisons,
we add a superscript (�, †, or ‡) to each use of a term that does not match our definition.

The term mixin � originates with Flavors [23], which inspired the Common Lisp
Object System (CLOS). In Flavors and CLOS, a mixin� is simply a class that is meant
to be combined with other classes via multiple inheritance.

Bracha and Cook refined the definition of mixin to “a subclass definition that may
be applied to different superclasses” [11]. As defined by Bracha and Cook, mixins sub-
sume classes, and we took a similar approach in our previous model of mixins for
Java [17]. Implementations, however, typically define mixins over a base language with
classes, as in PLT Scheme and the Jam language [4]. In the same vein, Smaradagkis and
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Batory implement mixins with C++ templates [30] in the spirit of our mix of class and
lambda.

For his dissertation, Bracha used the term mixin† for a construct in his Jigsaw lan-
guage [10], which included operations on mixins† such as sum and exclude. Ancona
and Zucca explore a formal framework [5, 6] for mixins†.

Schärli’s traits [28, 29] are a form of mixin† in the sense of Bracha’s dissertation. In
particular, Fisher, Reppy, and Turon [14, 27] provide typed models of traits that closely
resemble the typed mixin† models of Ancona and Zucca [5, 6]. Using the sense of mixin
in Bracha and Cook (and PLT Scheme), however, fine-grained operations make traits
qualitatively different from mixins. Our encodings of mixins and traits in Scheme il-
lustrate the difference. In practice, Black et al. [9] note the importance of alias and
exclude trait operations for the refactoring of the Smalltalk collection classes. Their
experience suggests that mixins are less suited to this kind of refactoring job than traits,
but additional experience with both is needed.

The Scala programming language [24] includes a typed trait‡ construct, but it
does not support any operation on traits‡ other than inheritance and combination with
a base class; in other words, the construct may well have been called a mixin. Indeed,
since multiple Scala traits‡ can be composed when they override the same method,
and since the order of the composition determines the resulting pattern of super calls,
a Scala trait‡ closely resembles a PLT Scheme mixin (but with a static type system).
The Fortress [3] language also includes a trait‡ construct that is similar to Scala’s.
Again, Fortress’s traits‡ could be characterized as mixins, although the lack of method
overriding in Fortress makes the difference nearly insignificant.
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Abstract. Class extensions provide a fine-grained mechanism to define incre-
mental modifications to class-based systems when standard subclassing mecha-
nisms are inappropriate. To control the impact of class extensions, the concept of
classboxes has emerged that defines a new module system to restrict the visibility
of class extensions to selected clients. However, the existing implementations of
the classbox concept rely either on a “classbox-aware” virtual machine, an ex-
pensive runtime introspection of the method call stack to build the structure of
a classbox, or both. In this paper we present an implementation technique that
allows for the structure of a classbox to be constructed at compile-time by means
of metadata transformations to rewire the inheritance graph of refined classes.
These metadata transformations are language-neutral and more importantly pre-
serve both the semantics of the classbox concept and the integrity of the under-
lying deployment units. As a result, metadata transformation provides a feasible
approach to incorporate the classbox concept into programming environments
that use a virtual execution system.

1 Introduction

It is generally accepted that the inheritance relationships supported by mainstream ob-
ject-oriented and class-based languages are not powerful enough to express many useful
forms of incremental modifications. To address this problem, several approaches have
emerged (e.g., Smalltalk [10], CLOS [22], MultiJava [6], Scala [21], or AspectJ [13])
that focus on a particular technique: class extensions. A class extension is a method that
is defined in a packaging unit other than the class it is applied to. The most common
kinds1 of class extensions are the addition of a new method and the replacement of an
existing method, respectively.

However, a major obstacle when specifying class extension is that their embodied
changes have global impact [2]. Moreover, even if a system allows for a modular spec-
ification of class extensions (e.g., MultiJava [6] or AspectJ [13]), it may not support
multiple versions of a given class to coexist at the same time. To remedy these short-
comings, Bergel et al. [1, 2] have recently proposed classboxes, a new module system
that defines a packaging and scoping mechanism for controlling the visibility of isolated

1 Bracha and Lindstrom [3] have also presented a hide operator that renders a method of a class
invisible to clients of that class.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 290–306, 2006.
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extensions to portions of class-based systems. Besides the “traditional” operation of
subclassing, classboxes also support the local refinement of imported classes by adding
or modifying their features without affecting the originating classbox. Consequently,
the classbox concept provides an attractive and powerful framework to develop, main-
tain, and evolve large-scale software systems and can significantly reduce the risk for
introducing design and implementation anomalies in those systems [2].

At present, there exist two implementations of classboxes in Smalltalk [2] and a re-
stricted prototype in Java [1]. The first Smalltalk implementation relies on a modified,
“classbox-aware” virtual machine in which a dedicated graph search algorithm imple-
ments local rebinding of methods. The second implementation uses a combination of
bytecode manipulation and a reified method call stack to build the structure of a class-
box. This technique is also applied in Classbox/J [1], an implementation of classboxes
for the Java environment. In Classbox/J, a preprocessor translates each method redef-
inition into a if statement that uses a ClassboxInfo object to determine, which
definition to call in the current context.

Common to all three implementations is that the integration of class extensions oc-
curs at runtime by means of a specially-designed method lookup mechanism. This im-
plementation scheme adds a significant execution overhead to redefined methods. For
the Smalltalk implementations, for example, this overhead is generally in-between 25%
to 60%, compared to the “normal” method lookup [2]. Similarly, the method lookup of
redefined methods in Classbox/J is on average 22 times slower than the normal method
lookup [1].

In this paper we present an alternative implementation strategy that uses metadata
transformations to integrate class extensions into a given class hierarchy. More pre-
cisely, we present a “classbox-aware” dialect of C# that defines a minimal extension to
the C# language in order to provide support for the classbox concept, and Rewire.NET,
a metadata adapter that implements a compile-time mechansism to incorporate the local
refinements defined in a classbox into their corresponding classes. This approach al-
lows us to treat standard .NET assemblies as classboxes, that is, we can import classes
originating form standard .NET assemblies into a newly defined classbox, apply some
local refinements to those classes, and generate a classbox assembly that is backward-
compatible with the standard .NET framework. As a result, we obtain a mechanism
that supports the coexistence of non-classbox-aware and classbox-aware software arti-
facts in one system and therefore allows for phased and fine-grained software evolution
approach.

Our approach to incorporate the classbox concept into the .NET framework uses code
instrumentation [4, 5, 12, 14, 15] to rewire the inheritance graph of a class hierarchy in
order to build the structure of a classbox. This approach preserves the original seman-
tics of the classbox concept while moving the process of constructing the structure
of a classbox from runtime to compile-time. Furthermore, the application of metadata
transformations allows us to use the standard method lookup mechanism for redefined
methods. No dynamic introspection of the method call stack is required.

A key aspect of our approach is that a growing number of modern programming
systems compile program code into a platform-independent representation that is exe-
cuted in a virtual execution system. The virtual execution system provides an abstract
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machine to execute managed code. The two most known virtual execution systems are
the Java platform [16] and the Common Language Infrastructure (CLI) [20]. Common
to both systems is that the concrete layout of classes is not specified. This decision rests
with the implementation of the virtual execution machine or a corresponding just-in-
time (JIT) compiler. Both, Java and the CLI use a combination of Intermediate Lan-
guage (IL) bytecode and metadata. Metadata provides the means for self-describing
units of deployment in these systems. Besides application-specific resources like im-
ages or custom attributes, metadata contains information to locate and load classes, lay
out instances in memory, resolve method invocations, and enforce security constraints.
In other words, it is metadata and not the IL code that defines the structure of classes
and their underlying class hierarchies. Rewire.NET exploits this special relationship
between IL-bytecode and metadata in order to bind class extensions defined in a given
classbox to their corresponding classes at compile-time.

The rest of this paper is organized as follows: in Section 2, we describe the classbox
programming model for the .NET framework. In Section 3 we present the architectural
elements to map the classbox concept to the CLI. We discuss the implementation of
Rewire.NET in Section 4 and provide a brief overlook of related work in Section 5.
We conclude this paper in Section 6 with a summary of the presented work and outline
future activities in this area.

2 Integration of the Classbox Model in the .NET Framework

2.1 Classbox Characteristics

The main characteristics of classboxes can be summarized as follows [2]:

• A classbox is an explicitly named unit of scoping in which classes (and their asso-
ciated members) are defined. A class belongs to the classbox it is first defined, but
it can be made visible to other classboxes by either importing or extending it.

• Any extension applied to a class is only visible to the classbox in which it occurs
first and any classboxes that either explicitly or implicitly import the extended class.
Hence, redefining a particular method of a class in a given classbox will not have
an effect on the originating classbox.

• Class extensions are only locally visible. However, their embodied refinements ex-
tend to all collaborating classes within a given classbox, in particular to any sub-
classes that are either explicitly imported, extended, or implicitly imported.

There are four additional, yet critical aspects in the definition of the classbox seman-
tics [1, 2] that need to be satisfied also, when adding support for the classbox concept
to a new programming environment:

Implicit import. The import mechanism provided by languages like Java or C# is non-
transitive, that is, a declaration namespace ns cannot export a class C, if Cwas imported
rather than defined in ns. In contrast, the module concept defined by classboxes uses
transitive import. More precisely, if a classbox cb explicitly imports a class C, then
all of C’s superclasses are implicitly imported into cb also. This not only allows for a
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local refinement of the explicitly imported class C, but also for a refinement of all other
classes in the inheritance graph of C in cb.

Method extension. The decision, whether a method m is added or acts as replacement
depends on its signature. That is, if a locally refined class C already defines a method
with the same name and signature, then m replaces this method. Otherwise, m is added
to C. Moreover, method replacement takes precedence in a flattened version of class
C [2].

Identity of classes. A key element of the semantics of classboxes is that the identity
of locally refined imported classes is preserved. By preserving the identity of a class C,
existing clients of C can benefit from the extensions applied to C also.

Virtual methods. The classbox concept rest upon virtual methods and dynamic bind-
ing [1, 2]. There are no provisions for non-virtual methods. In addition, the decision,
whether a method m is added or replaced in a given class C that occurs locally refined in
a classbox cb is based on the members defined by C and its superclasses. If a subclass
of C, say class D, is also explicitly imported into cb, then D should benefit from the
extensions applied to C. However, if D defines its own version of m, then this method
may hide C’s method m, effectively rendering parts of the class extensions applied to C
invisible to clients of D. A “classbox-aware” compiler can detect this situation, but the
classbox concept is blind for this behavior.

2.2 Dynamic Graph Search

Common to both the Smalltalk and the Java implementations of classboxes is a spe-
cially-designed method lookup mechanism that performs a dynamic search over a class-
box graph in order to ensure that import takes precedence over inheritance [1, 2]. More
precisely, if a given method cannot be located in the current imported class, then rather
than continuing with the superclass, the modified lookup tries to locate the required
method in the provider classbox. Only if the requested method cannot be located in the
provider classbox, then the search continues in the imported class’ superclass. The ef-
fect of this method lookup mechanism is that local refinements to imported classes are
dynamically linked into the corresponding class hierarchy. In other words, extending
an imported class is an operation that is performed at runtime.

Consider, for example, Figure 1 in which we highlight the search for the method
foo with respect to the class C. The lookup starts at point ’1’ and as class C neither
implements nor has been extended with a corresponding method, the lookup continues
in its superclass B (denoted by ’2’), which occurs as an implicitly imported class in
SampleClassbox. Again, the class B does not implement the foo method. There-
fore, the search has to continue by inspecting its superclass. However, since we have
defined an extension to class A (we use the rounded box as a graphical means to in-
dicate that the class A has been extended with the method foo), the search termi-
nates in the extension that defines the method foo (denoted by ’3’) rather than in
the class A directly, as this is the first point along the search path that implements the
method foo.

The reader should note that this special method lookup mechanism is required, be-
cause the structure of a classbox is not known until runtime in both the Smalltalk and
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Fig. 1. Method lookup as search over the classbox graph

Java implementations. Moreover, even though extensions are bound dynamically into a
class hierarchy, the classbox concept neither supports virtual classes [11] nor any form
of “chameleon” objects that can change their structure based on the environment in
which they are currently being used. Objects are instantiated with respect to a provider
classbox that determines and finalizes the capabilities of that object. The dynamic graph
search does not supersede the method layout, but amends it to build the structure of a
given object’s provider classbox at runtime.

2.3 Classbox-Aware C#

To ally the classbox concept with the .NET framework, we define a “classbox-aware”
dialect of C#2. In previous work, we already explored a technique to amend the C#
language with the classbox concept [17]. However, even though we were able to define a
conceptual approach for the integration of the classbox concept in the .NET framework,
the resulting language extensions could not be properly type-checked. Furthermore, the
use of the Metadata Unmanaged API [19] turned out to be unsuitable for the purpose
of manipulating .NET assemblies, as this API does not provide access to IL-bytecode,
which is essential for a comprehensive solution. The language model proposed in this
work not only follows closely the one proposed by Bergel et. al [2], but also allows for
a proper type checking of the specified class extensions:

Class Import. To explicitly import a class, we use the alias form of the C# using-
directive [7, §16.4.1]. An alias for a type is a user-defined name that is only available
within the namespace body that introduces it. However, in contrast to standard C#,
the using-alias-directive in classbox-aware C# creates an “empty” subclass with the
same name for each explicitly imported class in the importing classbox. This approach
not only enables the local refinement of the explicitly imported class, but publishes
the explicitly imported class to clients of the importing classbox as it had been de-
fined in the importing classbox itself. The introduction of a new subclass does not

2 We are currently experimenting with the open-source Mono compiler in order to define a fron-
tend for classbox-aware C# [17].
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using System ;

namespace TraceAndColorCB
{

using System . Drawing ;

using Poin t = PointHierarchyCB . Poin t include
{

pr ivate Color co l o r ;
public Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
public void MoveBy ( i n t dx , i n t dy )
{

Console . Wr i teL ine ( ”MoveBy : {0} , {1}” , new object [ ] { dx , dy } ) ;
base . MoveBy ( dx , dy ) ;

}
}

using LinearBPoin t = PointHierarchyCB . L inearBPoin t ;
}

Listing 1. Classbox TraceAndColorCB in classbox-aware C#

preserve the identity of classes as required by the classbox model. To restore it, we apply
Rewire.NET to the assemblies constituting the physical structure of the corresponding
classbox.

Subclassing. Subclassing is represented by the standard class building mechanisms.
The available C# language abstractions suffice to specify this operation. A subclass
introduces a new type name in the defining classbox. This type name must be unique.
However, the classbox concept allows for the coexistence of both the new subclass and
implicitly imported classes with identical names in the same classbox.

Class Extension. We use the modified alias form of the C# using-directive and add
an include-clause to specify the local refinements to an imported class. The mem-
bers of the local refinements are specified in a class-body [7, §17.1.3]. All methods
and properties are implicitly marked virtual. If the extended class already defines a
member with the same name and signature, then this member becomes overridden (i.e.,
replaced). Otherwise, the extension is added to the class. Extending an imported class
results in a new subclass with the same name in the importing classbox. As in the case
of class import, we have to use Rewire.NET to restore the class identity.

A classbox in the .NET framework has a logical and a physical structure. These
concepts do not change the underlying semantics of the classbox model, but provide us
with the means to separate the program interface from the implementation of a classbox.
The logical structure of a classbox defines a namespace to specify the import of classes,
the introduction of subclasses, and the extension of classes. The physical structure of a
classbox, on the other hand, identifies the assemblies that contain the executable code
that is specified by the logical structure of a classbox.

To illustrate the new language abstractions, consider the specification of the classbox
TraceAndColorCB, as shown in Listing 1. The namespace TraceAndColorCB
defines the logical structure of the classbox TraceAndColorCB in which we explic-
itly import the classes Point and LinearBPoint, both originating from classbox
PointHierarchyCB. In TraceAndColorCB, we extend class Point with the
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using System ;

namespace TraceAndColorCB
{

using System . Drawing ;

public class Poin t : PointHierarchyCB . Poin t
{

pr ivate Color co l o r ;
public Poin t ( i n t i x , i n t i y ) : base ( i x , i y ) {}
public v i r t u a l Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
public overr ide void MoveBy ( i n t dx , i n t dy )
{

Console . Wr i teL ine ( ”MoveBy : {0} , {1}” , new object [ ] { dx , dy } ) ;
base . MoveBy ( dx , dy ) ;

}
}

public class LinearBPoin t : PointHierarchyCB . L inearBPoin t
{

public LinearBPoin t ( i n t i x , i n t i y , i n t ibound ) : base ( i x , i y , ibound ) {}
}

}

Listing 2. Classbox TraceAndColorCB in standard C#

property Color (utilizing a private instance variable color) and the method MoveBy
that defines a tracing facility to monitor invocations of MoveBy. The method MoveBy
overrides (i.e., replaces) an exiting method in class Point. It defines also an access to
the original behavior through a base-call. The property Color, on the other hand, is
new and therefore added to the refined class Point in classbox TraceAndColorCB.
The class LinearBPoint, which defines a non-constant linear upper bound for point
objects, is an indirect subclass of class Point (i.e., in PointHierarchyCB the class
LinearBPoint is derived from BoundedPoint that is a direct subclass of Point).
Therefore, the local refinements defined for classPoint impact class LinearBPoint
also, that is, it possesses now a property Color and a method MoveBy with a tracing
facility in TraceAndColorCB.

The classbox-aware C#-compiler translates the specification of this classbox into an
internal representation that corresponds to the standard C#-code shown in Listing 2.
Each explicitly imported class results in a new class definition in which the imported
class becomes the direct supertype. Moreover, in order to preserve all constructors de-
fined by class Point and LinearBPoint, we add corresponding “empty” construc-
tors to the new class definitions. This approach prevents the automatic insertion of a
default-constructor that would render the original constructors invisible.

The result of compiling the classbox TraceAndColorCB is the assembly Trace-
AndColorCB.dll that together with PointHierarchyCB.dll (i.e., the assem-
bly defining the classbox PointHierarchyCB) constitute a provisional physical
structure of the classbox TraceAndColorCB. In the provisional structure, the iden-
tity of imported classes has not yet been established. To restore the identity of im-
ported classes, we have to rewire the inheritance graph of the classes Point and
LinearBPoint by using Rewire.NET. The result is the final physical structure of
the classbox TraceAndColorCB.
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3 Building the Structure of a Classbox at Compile-Time

3.1 Metadata Type Declarations

Each CLI-enabled language has to define a language-appropriate scheme to represent
types and members in metadata. At the core of every CLI-enabled programming lan-
guage is a set of built-in data types compliant with the Common Type System (CTS),
mechanisms to combine them to construct new types, and a facility to assign names to
new types to seamlessly integrate them in the CLI [20]. The CLI uses an implementation-
dependent declarative encoding mechanism to represent metadata information, called
metadata token. A metadata token is a scoped typed identifier of a metadata object and
is represented as a read-only index into a corresponding metadata table.

New types are introduced via metadata type declarations [20]. TYPEDEF tokens en-
code the name of a type, its declaration namespace, the super type (index into TYPEDEF
or TYPEREF table), an index into the FIELD table that marks the first of a continuous
run of field definitions owned by this type, and an index into the METHODDEF table
that marks the first of a continuous run of method definitions owned by this type. In
addition, a given assembly can refer to types defined in another module or assembly.
These references are encoded by TYPEREF, MEMBERREF, and ASSEMBLYREF to-
kens, respectively. A TYPEREF token encodes the resolution scope (e.g., index into
ASSEMBLYREF table), the name of the type, and its declaration namespace. MEMBER-
REF tokens are references used for both fields and methods of a class defined in another
assembly. MEMBERREF tokens encode the type that owns the member, the member’s
name, and its signature. Finally, ASSEMBLYREF is a metadata token, which encodes
the information that uniquely identifies another assembly on which the current assem-
bly is depending. ASSEMBLYREF tokens not only encode the name to the referenced
assembly, but also its version, which enables a deployment mechanism that allows for
multiple versions of assemblies with the same name to coexist on the one system.

Metadata is organized in tables, whose rows start with index 1. Metadata may contain
unreachable rows, but an index into a table must denote a valid row in that table. The
indices into the metadata tables create a static dependency or link graph. The CLI loader
imports the metadata into its own in-memory data structures, which can be browsed
via Reflection services. Both the metadata in an assembly and the corresponding in-
memory runtime structures are immutable. However, they provide fast and direct access
to required type information.

3.2 Changing the Metadata

To move the process of creating the structure of a classbox from runtime to compile-
time, we take advantage of the separation of metadata and IL-bytecode. Both, the import
of a class and extending an imported class trigger the creation of a new subclass with
the same name as outlined in Section 2.3. However, subclassing is an operation that
breaks the connection to former clients [9]. To restore this connection and to enable a
former clients of the extended class to benefit from the local refinements, we have to
redirect the supertype edge of any direct explicitly or implicitly imported subclass of a
refined class to the newly created class in the current classbox.
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(a)
TraceAndColorCB.LinearBPoint

TraceAndColorCB.Point

PointHierarchyCB.LinearBPoint

PointHierarchyCB.BoundedPoint

PointHierarchyCB.Point

(b)TraceAndColorCB.LinearBPoint

TraceAndColorCB.Point

PointHierarchyCB.LinearBPoint

PointHierarchyCB.BoundedPoint

PointHierarchyCB.Point

Fig. 2. Inheritance graph in classbox TraceAndColorCB before and after flattening

Consider again the classbox TraceAndColorCB. This classbox explicitly im-
ports the classes Point and LinearBPoint from PointHierarchyCB. As a
result, we create two new subclasses with the same name in TraceAndColorCB.
The resulting inheritance graph is shown in Figure 2(a) (explicitly imported classes are
marked with a solid rounded box, whereas implicitly imported types are marked with a
dotted rounded box).

A name of a type in CLI consists of two elements: a typename and a namespace.
Therefore, when we introduce the new subclasses for explicitly imported types, we
create a new name in which the namespace component identifies the importing class-
box. The scheme allows for the coexistence of different versions of a class in the
same classbox, since it is always possible to distinguish them by using their names-
pace name. In the provisional structure of classbox TraceAndColorCB, the class
TraceAndColorCB.Point is not in the inheritance graph of class TraceAnd-
ColorCB.LinearBPoint. As a consequence, the classTraceAndColorCB.Li-
nearBPoint does not yet benefit from the local refinements applied to the class
TraceAndColorCB.Point, as required by the classbox model. To change this, we
have to make TraceAndColorCB.Point a direct supertype of class PointHie-
rarchyCB.BoundedPoint. To accomplish this, we change the TYPEDEF
metadata token defining the class PointHierarchyCB.BoundedPoint in the
metadata of the assemblyPointHierarchyCB.dll. More precisely, we need rewire
the Extends column of PointHierarchyCB.BoundedPoint’s TYPEDEF meta-
data token to point to the TYPEDEF metadata token defining class TraceAndColor
CB.Point in assembly TraceAndColorCB.dll. We proceed by performing the
following instructions:

1. Create a new version of PointHierarchyCB.dll and name this assembly
PointHierarchyCB(TraceAndColorCB).dll, where the name Trace-
AndColorCB firmly associates this new assembly with the classbox TraceAnd-
ColorCB to disambiguate multiple rewired versions of thePointHierarchyCB
classbox.

2. Add an ASSEMBLYREF token for TraceAndColorCB to the metadata of Po-
intHierarchyCB(TraceAndColorCB).dll.
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TraceAndColorCB

BoundedPoint

PointHierarchyCB(TraceandColorCB).dll

LinearBPoint

TraceAndColorCB.dll

LinearBPoint

Point

+ Color {get; set;}
+ MoveBy

Point

Fig. 3. Structure of classbox TraceAndColorCB

3. Add a TYPEREF token for TraceAndColorCB.Point to the metadata of Po-
intHierarchyCB(TraceAndColorCB).dll.

4. Set the Extends column of the TYPEDEF token for class PointHierarchyCB.-
BoundedPoint to point to the newly addedTYPEREF token inPointHierar-
chyCB(TraceAndColorCB).dll.

The result of this transformation is a flattened classbox that publishes two classes:
Point and LinearBPoint, whose inheritance graph is shown in Figure 2(b). The
metadata manipulations do not affect existing clients of PointHierarchyCB, since
we create a new version for this assembly, before applying the transformations. More-
over, in contrast to Classbox/J, we do not need access to the original source code to cre-
ate to structure of a classbox. The logical structure of classbox TraceAndColorCB
is defined by the static link graph in metadata of its corresponding physical represen-
tation, that is, the assemblies TraceAndColorCB.dll and PointHierarchy-
CB(TraceAndColorCB).dll, as shown in Figure 3.

3.3 Restoring Constructor Integrity

The rewiring process outlined in the previous section manipulates metadata, but not
the IL-bytecode. The process preserves the integrity of metadata, that is, all indices to
tables in metadata denote a valid row. Unfortunately, changing the Extends column of
the TYPEDEF token describing class BoundedPoint does not preserve the integrity
of the IL-bytecode in PointHierarchyCB(TraceAndColorCB).dll.

In order to initialize a new object being created for a given class, the construc-
tor for that class always calls its statically known superclass constructor first. In the
original assembly PointHierarchyCB.dll, this statically known superclass con-
structor is PointHierarchyCB.Point::.ctor. The situation in the assembly
PointHierarchyCB(TraceAndColorCB).dll is different, however, as we
have changed the supertype of the class BoundedPoint to TraceAndColorCB.-
Point. It is, therefore, not correct to call PointHierarchyCB.Point::.ctor.
As a consequence, the IL-bytecode for the constructor of the class BoundedPoint
loses its integrity, since object initialization cannot skip classes.
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We can, however, easily restore the required integrity. The target of a static method
call is indicated by a method descriptor. This method descriptor is a metadata token
(either METHODDEF or MEMBEREF) that describes the method to call and the number,
type, and order of the arguments that have been placed on the stack to be passed to
that method. In other words, it is the method descriptor and not the IL-bytecode that
determines the destination address of a method call. We exploit this fact, to restore the
broken IL-bytecode integrity of constructor for the class BoundedPoint in assembly
PointHierarchyCB(TraceAndColorCB).dll, as follows:

1. Add a MEMBERREF token indicating the constructor for the class TraceAndCo-
lorCB.Point to the metadata of PointHierarchyCB(TraceAndColor-
CB).dll.

2. Construct, using the new MEMBERREF token, a new method descriptor for Trace-
AndColorCB.Point::.ctor.

3. Use the Relative Virtual Address (i.e., the RVA column) of the METHODDEF to-
ken describing the constructor for the class BoundedPoint to locate the method
descriptor for PointHierarchyCB.Point::.ctor and replace it with the
descriptor built in the previous step.

Using these instructions, the integrity of the constructor for the class Bounded-
Point in assemblyPointHierarchyCB(TraceAndColorCB).dll is restored.
As a result, we have obtained the final physical structure of the classbox TraceAnd-
ColorCB. The assembliesPointHierarchyCB(TraceAndColorCB).dlland
TraceAndColorCB.dll are standard .NET assemblies and pass verification. Thus,
we can use them like any other non-classbox-aware assembly. The structure of the class-
box TraceAndColorCB is imprinted in the metadata of the underlying assemblies.
Moreover, by moving the process of building the structure of a classbox from run-
time to compile-time we recover the standard method lookup mechanism for redefined
methods and therefore, eliminate the execution overhead formerly associated with class
extensions.

3.4 Evaluation of the Rewiring Technique

A major benefit of our solution is that we can use the standard method lookup mecha-
nism for redefined methods. As a result, there is no measurable difference in the execu-
tion time of both plain and redefined methods.

While the size of the IL-bytecode remains the same, the size of the metadata grows
due to the rewiring process. The amount of change underlies several varying factors.
First, the metadata is not located at the end of the .text section. In this case, we
cannot recycle the old metadata and therefore create a new image of the metadata at
the end of the .text section, which effectively renders the old metadata into garbage.
The second factor influencing the growth of metadata is associated with the amount of
“reusable” rows. The rewiring process takes a very conservative approach, as it only
adds new rows to the metadata, if no appropriate row exists. All byte-indexed data (i.e.,
strings, blob data, and UTF-16 strings) cannot be reused, as this may break indices from
IL-bytecode into the corresponding heaps. When a new row is needed, then this row is
always added to the end of its corresponding table or heap.
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To illustrate the the change in size, consider, for example, the rewiring process
of PointHierarchyCB.dll. The required transformations require 168 additional
bytes of metadata. Unfortunately, the resulting size of the new metadata exceeds the
available free space at the end of the .text section. Therefore, we are required to en-
large it by one unit of size SectionAlignment, which is 4K. However, the numbers for the
two system assembliesSystem.Drawing.dll andSystem.Windows.Forms.-
dll indicate that the overhead for placing the metadata at the end of the .text section
may reach a threshold at which it cannot be ignored anymore. In these two assemblies,
the size of the metadata amounts to almost half of their total size. We plan, therefore, to
explore alternative approaches in future work that will allow us to reorder the .text
section data, so that the space occupied by the old metadata can be reclaimed.

One of the key features of the classbox concept is that multiple versions of a class
can coexist in the same classbox or application. Our rewiring technique preserves this
property of classboxes by adding a target classbox tag to the originating namespace
names of all explicitly imported types3. For example, the namespace namePointHie-
rarchyCB in classbox TraceAndColorCB is changed to TraceAndColorCB:
PointHierarchyCB, an identifier that cannot be defined in C#. The effect of this tag
is twofold. First, in C# the visibility of a superclass cannot be more restrictive than the
one of any of its subclasses. As a consequence, even implicitly imported types possess
public visibility in a provider classbox. The target classbox tag eliminates this problem
completely, as it renders all implicit imported types invisible. Secondly, the target class-
box tag disambiguates multiple versions of the same class. For example, a client can
safely use both classboxes PointHierarchyCB and TraceAndColorCB, even
though all provided classes occur multiple times either explicitly imported, implicitly
imported or both in the client space. Therefore, different versions of a class can coexist
and be unequivocally identified in the same declaration space.

4 Rewire.NET

Rewire.NET is a .NET component, written in C#, that accepts as input a rewiring spec-
ification that lists the target classbox, the referenced assemblies, and all explicitly im-
ported classes. Rewire.NET analyzes the provisional physical structure of the target
classbox and performs the necessary transformations to produce a final physical struc-
ture of the target classbox. The implementation of Rewire.NET has one subsystem for
the representation of assemblies, called CLI. The CLI subsystem is a namespace that
defines a collection of classes that provide an object-oriented interface to read, alter,
and write .NET assemblies (cf., Figure 4).

4.1 The CLI Subsystem

Several methods and tools have been proposed to perform assembly introspection. The
.NET framework already provides theSystem.ReflectionAPI, which can be used

3 We have omitted these tags in the above explanation of the rewiring technique to preserve
readability.
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Fig. 4. CLI.Assembly, CLI.SectionHeader, and CLI.MetaData

for this purpose. Using the services provided by this API, we are able to programmat-
ically obtain the metadata contained in an assembly. Unfortunately, this API lacks the
ability to access IL-bytecode. However, as outlined in Section 3.3, we need access to
the IL-bytecode in order to restore the integrity of a constructor, whose class was sub-
ject to a supertype change. We face a similar problem with the Metadata Unmanaged
API [19] that can be used by a compiler to query the metadata of a host assembly and
emit the correspondingly updated information into a new version of the host assembly.

A framework that provides access to both metadata and IL-bytecode is the Runtime
Assembly Instrumentation Library (RAIL) [4]. RAIL closes the gap between the reflec-
tion capabilities in the .NET framework and its support for code emission. RAIL offers
an object-oriented interface for an easy manipulation of assemblies, modules, classes,
and even IL-bytecode. Nevertheless, RAIL cannot be used for the implementation of
Rewire.NET, as this API does not allow for the manipulation of type references. RAIL
treats type references (i.e., TYPEREF metadata tokens) as read-only pointers to mem-
bers defined outside the current assembly being instrumented.

The CLI API addresses these shortcomings. The primary purpose of this API is to
provide an object-oriented view of an assembly with a symmetric support for reading
and writing Portable Executable files. In addition, the CLI API defines mechanisms to
manipulate the metadata of an assembly and to fetch the IL-bytecode. It does, how-
ever, not define any IL-bytecode manipulation capabilities, except for the update of
method descriptors. We can use theReflection.EmitAPI or RAIL for IL-bytecode
instrumentation.

At the center of the CLI API is the class Assembly, which is composed from
the core elements of the extended Portable Executable file format, as shown in Fig-
ure 4(a). The class Assembly represents an in-memory image of a Portable Exe-
cutable file. It provides access to the structure of the runtime file format of an assembly.
The class Assembly defines both a Read and a Write method to load an assembly
into memory and to create a new PE image, respectively. However, rather than retain-
ing the contents of all native PE sections in memory, the Read method constructs a
ProxyWriter object and associates it with its corresponding section data (cf., Fig-
ure 4(b)). The class ProxyWriter defines a method FetchILMethod to acquire
the IL-bytecode associated with a given Relative Virtual Address (RVA), a method
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Update that takes a byte array and a RVA to change the byte sequence starting at RVA
in the associated section data, and a method Copy that writes the associated section
data to a new Portable Executable file.

The class MetaData, as shown in Figure 4(c), represents the logical format of meta-
data. It provides access to all metadata stream heaps. These stream heaps are structured
as tables and provide an index-based access to rows. Furthermore, each heap defines
an Add method to append a new row to a table. Stream heaps do not allow for the re-
moval of a row. Deleting a row may destroy the integrity of metadata. However, stream
heaps may contain garbage, that is, rows that are not indexed by either metadata or
IL-bytecode.

4.2 Rewire.NET

Rewire.NET is a Console Application that reads the rewiring specification that is gen-
erated by the classbox-aware C# compiler while compiling a classbox. The format of
the rewiring specification is given below:

Specification ::= { Definition }*
Definition ::= R # ReferencedAssemblyFileName | T # ClassboxAssemblyFileName |

I # ExplicitlyImportedClass | N # ClassboxName

We have added support for the generation of a rewiring specification to the open
source C#-compiler of the Mono project [23, version 1.1.8.3]. At compile-time, the
modified C#-compiler generates a list regarding all explicitly referenced assemblies,
all explicitly imported classes, and all extended imported classes. For example, con-
sider again the classbox TraceAndColorCB. The specification for building the final
physical structure of this classbox is given below:

N # TraceAndColorCB
T # TraceAndColorCB . d l l
R # PointHierarchyCB . d l l
I # PointHierarchyCB . Poin t
I # PointHierarchyCB . L inearBPoin t

After reading the rewiring specification, the rewiring process proceeds in two phases.
In the first phase, we identify (i) all classes, whose super type is in the set of explicitly
imported classes and register these classes for update, (ii) build a list of all assemblies
for which we need to create a new version, and (iii) add the required target classbox
tags. For example, in the case of the classbox TraceAndColorCB, we need to update
the class BoundedPoint originating from PointHierarchyCB, have to create a
new version of the assembly PointHierarchyCB.dll, and add the classbox tag
TraceAndColorCB: to the namespace name PointHierarchyCB. In the second
phase, we perform the actual metadata transformations. First, we create the required
new assembly versions. Next, we add the required new ASSEMBLYREF metadata to-
kens to their respective assemblies. Adding the new ASSEMBLYREF tokens first sim-
plifies the next step, as these new ASSEMBLYREF tokens are required for the update
of the super type information. In the final step in this phase, we update the super type
information and restore the integrity of the constructors of all classes marked for update.

Both phases take place in memory. To create the actual images of the updated as-
semblies, we have to call the their Write method. Metadata must be stored in the text
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section (i.e., the .text section). The Write method places the new metadata at the
end of the text section. If necessary, the text section is enlarged to accommodate the
new metadata. It is in general not possible to reclaim the space occupied by the old
metadata, as there are no requirements to place metadata at the end of the text section.
However, by placing the new metadata at the end of the text section, we can recycle the
space occupied by metadata in future updates.

5 Related Work

Code instrumentation has been a subject of intense research in the last decade. Code in-
strumentation focuses on three primary purposes: introspection, optimization, and secu-
rity. By using code instrumentation we can, for example, detect any places in compiled
code, where this code accesses the local file system and insert an additional authenti-
cation layer. To edit fully-linked executables, Larus and Schnarr [15] have proposed the
Executable Editing Library (EEL). EEL is a framework for building tools to analyze and
modify executable (i.e., compiled) code. EEL provides an object-oriented architecture-
and system-independent set of abstractions (i.e., C++ class hierarchies) to read, ana-
lyze, and modify executable code. These abstractions are very similar to those found in
a compiler, as the purpose of both EEL and a compiler is to manipulate programs.

Code instrumentation frameworks that target the Java platform are Binary Compo-
nent Adaptation (BCA) [12] and Javassist [5], which allow for an on-the-fly code instru-
mentation of binary Java components. Both frameworks use a customizable class loader
to rewrite and/or reflect on binary components before (or while) they are loaded. The
rewriting process does not require source code access and guarantees release-to-release
compatibility.

RAIL [4] is the first general purpose code instrumentation library for the .NET plat-
form. RAIL supports structural [8] as well as behavioral reflection [18]. The abstrac-
tions provided by RAIL allow for both low- and high-level modifications of assemblies.
RAIL enables the modification of assemblies at class level (e.g., substitution of classes,
members, and member access). RAIL does not, however, allow for the manipulation of
references to external types.

Lafferty and Cahill [14] have presented Weave.NET, a load-time weaver for the
.NET framework that allows aspects and components written in different languages
to be freely intermixed. Weave.NET relies on the Common Language Infrastructure
and XML to specify aspect bindings. By using CLI, Weave.NET provides a language-
independent aspect-oriented programming model.

6 Conclusion and Future Work

In this paper, we have presented an approach to seamlessly incorporate the classbox
concept into the .NET framework. Classboxes provide a feasible solution to the prob-
lem of controlling the visibility of change in object-oriented systems without breaking
existing applications, as they allow for strictly limiting both the scope and the impact
of any modifications. Consequently, classboxes can significantly reduce the risk for
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introducing design and implementation anomalies due to the need to adapt a software
system to changing requirements [2].

We replaced the dynamic integration of class extensions at runtime by a static,
compile-time-based approach. Our approach not only eliminates the runtime overhead
that is associated with the construction of the classbox structure, but allows us also
to treat standard .NET assemblies as classboxes. The key method underlying the in-
tegration of the classbox concept in the .NET framework is metadata manipulation.
Using this code instrumentation method we can restructure the inheritance graph of a
class hierarchy in order to incorporate local refinements (i.e., class extensions) into the
behavior of explicitly imported classes. Hence, by using the metadata concept of the
underlying Common Language Infrastructure (CLI), classboxes can be seamlessly in-
tegrated into the .NET environment without the need to modify the underlying runtime
infrastructure.

The re-wiring process requires the originating assemblies to be copied. This appears
to be a drawback of our implementation. However, the new versions of these assemblies
play a major role in a compile-time-based approach to integrate extensions into a exist-
ing class hierarchy. The .NET framework uses a strong version control mechanism as
each assembly is assigned a unique version number. In our implementation, we utilize
this mechanism to distinguish between different classboxes. An extension to an im-
ported class triggers the creation of new versions of referenced assemblies that contain
types the imported class is depending upon. These new assemblies are bound to a par-
ticular classbox. The result is a physical and logical structure the captures precisely the
defined classbox and does not affect previously defined classboxes. As a consequence,
this structure can be deployed independently.

In this work, we have used a rather conservative approach to manipulate metadata.
However, metadata transformation allow for a variety of manipulations of the structure
of classes. We plan, therefore, to explore more aggressive class restructuring techniques
in the future in order to enrich the classbox concept. In addition, we plan to apply the
rewiring technique to Classbox/J. However, since Java platform uses a different deploy-
ment mechanism (usually based on JAR-files) that lacks a strong association between
deployment unit, version, and package name, the physical structure of a classbox can-
not span across multiple physical units as in the .NET framework. Future work on the
classbox concept will include, therefore, the exploration of an alternative packaging
mechanism to represent the physical structure of a classbox in which the classes of a
classbox are grouped in one physical deployment unit.
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Abstract. Fast dynamic compilers trade code quality for short com-
pilation time in order to balance application performance and startup
time. This paper investigates the interplay of two of the most effective
optimizations, register allocation and method inlining for such compil-
ers. We present a bytecode representation which supports offline global
register allocation, is suitable for fast code generation and verification,
and yet is backward compatible with standard Java bytecode.

1 Introduction

Programming environments that support dynamic loading of platform-indep-
endent code must provide supports for efficient execution and find a good
balance between responsiveness (shorter delays due to compilation) and perfor-
mance (optimized compilation). Thus, most commercial Java Virtual Machines
(JVM) include several execution engines. Typically, there is an interpreter or a
fast compiler for initial executions of all code, and a profile-guided optimizing
compiler for performance-critical code.

Improving the quality of the code of a fast compiler has the following bene-
fits. It raises the performance of short-running and medium length applications
that exit before the expensive optimizing compiler fully kicks in. It also benefits
long-running applications with improved startup performance and responsive-
ness (due to less eager optimizing compilation). One way to achieve this is to
shift some of the burden to an offline compiler. The main question is what opti-
mizations are profitable when performed offline and are either guaranteed to be
safe or can be easily validated online.

We investigate the combination of offline analysis with online optimizations for
the two most important Java optimizations [12]: register allocation and method
inlining, targeted for a fast compiler. The first challenge we are faced with is
the choice of intermediate representation (IR). Java bytecode was designed for
compactness, portability, and verifiability and not for encoding offline program
optimizations. We build on the previous work [16,18,17,2,9,11,10] and propose a
simplified form of the Java bytecode augmented with annotations that support
offline register allocation in an architecture independent way. We call it SimpleIR
(or SIR). A SIR program is valid Java bytecode and can thus be verified and
used in any JVM. We then evaluate offline register allocation heuristics [2,10]
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and propose novel heuristics. Another challenge is that performing method inlin-
ing offline is not always effective because of separate compilation (e.g., dynamic
class loading over network and dynamic bytecode generation), architecture inde-
pendence (e.g., platform-dependent (standard) library modules), and access re-
striction (e.g., inter-class inlining of methods that access private fields). Thus, we
ask the question: can we combine offline register allocation with online method
inlining? The contributions of this paper are as follows:

– Backward-compatible IR for offline register allocation: We propose
a simplified form of Java bytecode with annotations which supports encoding
offline register allocation, fast code generation and verification, and backward
compatibility.

– Evaluation of offline register allocation heuristics: We directly compare
two previously known register allocation heuristics and two new heuristics.

– Register allocation merging technique: which quickly and effectively
computes register allocation for inlined methods based on offline register al-
location for individual methods.

– Empirical evaluation: We have implemented our techniques in a compiler
and report on performance results and compilation times for different scenarios.

2 Intermediate Representations

Alternative intermediate code representations have been explored in the liter-
ature. They can be categorized into three groups according to their level of
abstraction and conceptual distance from the original format. The first category
is annotated bytecode using the existing features of Java bytecode format. This
approach is backward compatibile as any JVM can run the code by simply ig-
noring the annotations. The work of Krintz et al. [11], Azevedo et al. [2], and
Pominville et al. [14] are some examples. The second category can be described
as optimization-oriented high-level representations. These representations do not
necessarily bear any resemblance to Java bytecodes. An example is SafeTSA [1]
which is a type safe static single assignment based representation. The last cat-
egory is that of fully optimized low-level architecture dependent representations
with certain safety annotations, such as the typed assembly language (TAL) [13].

2.1 An IR for Offline Register Allocation

We propose an IR for offline register allocation which is a simplified form of the
Java bytecode (called SIR). We motivate our design choices and contrast them
with previous results.

Backward compatibility with Java. SIR is a subset of Java bytecode and
thus backwards compatibile. This is important: Any JVM can run SIR code
with the expected semantics. Existing tools can be used to analyze, compile, and
transform SIR code. This is in contrast to [1,18] which proposes an incompatible
register-based bytecode or a SSA form. Offline register allocation results are
encoded in annotations following [2,9,10,11].
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Local variables as virtual registers. We follow Shaylor [16] who suggested
mapping local variables in the Java bytecode to (virtual) registers. In con-
trast, [2,9,10] suggest using a separate annotation stream. Directly mapping
locals to registers has the advantage that no verification is needed. Other for-
mats must ensure that annotations are consistent. Any additional verification
effort will increase the (online) compilation time and thus reduce the usefulness
of offline optimizations.

Cumulative register allocation. We refer to local variables as virtual registers
since they are candidates for physical registers. We adopt a cumulative register
allocation strategy, following [2,10]. That means that the allocation decision for
K physical registers is computed on top of the decision for K − 1 registers
by adding an additional mapping from the Kth register to some locals that
were previously not allocated to registers. It produces a ’priority list’ of locals
variables. Cumulative allocation aims to support an arbitrary number of physical
registers while trying to minimize the degradation in allocation quality when the
number of available registers is unknown offline. [9] doesn’t discuss how registers
are allocated. [11] simply encode the static counts of variable occurrences as
hints. [16] limits allocation to the first nine local variables.

Register tables. We store our register allocation annotations in a register table
which associates local variables with their scores in decreasing order, in the form
{(l1, s1), (l2, s2), ...}. Scores indicate the desirability of allocating a given variable
to a physical register. In our implementation, these scores are weighted reference
counts of variables (count 10d in a loop of depth d). The fast compiler takes as
many local variables as the available physical registers on the target architecture
from the top of the register table and assigns them to the physical registers.
There is a separate table for each of integers, object references, longs, floats, and
doubles. A register table bears some similarity to a stack map that is used to
store the types of local variables at different program points for fast bytecode
verification [15]. Register tables tend to be smaller than the parallel register
annotations of [2,9,10] (space overheads of more than 30% have been reported).

Simplified control and data flow. In SIR, subroutines (the jsr and ret
instructions to implement finally clauses) of the Java bytecode are disallowed.
Subroutines are notorious for making code analysis, optimization and verifica-
tion slower and more complex. Furthermore, the operand stack must be empty
at basic block boundaries, in order to achieve single-pass code generation. For
example, if a loop head is only reachable from the backward edge, a single-pass
code generator (like ours) cannot know the height of the evaluation stack without
a second pass. SIR requires the evaluation stack to be empty between core oper-
ations (such as arithmetic operations, method calls, and so on). Operands must
always be loaded from local variables and the result stored to a local variable.
That essentially means that we treat bytecode as a three-address IR, following
[16]. When a method is called, the arguments reside in the first part of the local
variables array. For backward compatibility, we treat these locals specially. We
do not consider them to be virtual registers and exclude them from the register
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table. We insert a sequence of moves (loads and stores) at the method entry to
copy arguments to local variables. Furthermore, we restrict local variable to hold
only one type for the entire method. That simplifies the mapping local variables
to physical registers.

Verification. It is easy to verify whether the bytecode is SIR, and that check can
be performed in a single pass. It is simply a matter of making sure that restricted
instructions (e.g., jsr, ret, swap) do not appear, that the local variables are not
used to hold more than one type and that they match the type of the register
table, that there is a store (or a pop) after each instruction that produces a value,
and that the evaluation stack is empty at branch instructions. Our compiler
performs the checks during the code generation in a single pass. We do not
verify the scores in register tables because the correctness of the scores does
not affect the safety of the code. However, incorrect scores may influence the
performance.

3 Offline Register Allocation

3.1 Cumulative Assignments

We formulate offline register allocation in terms of cumulative register assign-
ment where an assignment for K physical registers is reused for K + 1 registers
by adding an assignment for the (K + 1)th register without changes for the first
K registers. There are two benefits of cumulative assignments: architecture in-
dependence as any number of physical registers can be matched to the top K
virtual registers. Second, cumulative assignments are more space efficient than
an alternative approach where separate assignments for each possible value of K
are stored in the IR. Cumulative allocation can be viewed as a packing problem
where an ordered list of containers (virtual registers) and items (live ranges of
data values) must be packed into as few containers as possible and as densely to-
ward the first container as possible, so that interfering items (data values whose
live ranges overlap) will not be put in the same container.

A fast compiler can use cumulative assignment as follows. If K physical regis-
ters are available, the top K virtual registers in the register table will be mapped
to physical registers. Several scratch registers have to be reserved for loading and
spilling the virtual registers that are not assigned to physical registers and for
micro operations hidden in the bytecode. The drawback of a cumulative register
assignment is that a cumulative assignment may not be optimal for any K .

There are two potentially conflicting goals in cumulative allocation: minimiz-
ing the number of virtual registers in an assignment and maximizing density in
terms of the packing problem (the sum of the score of the variables that are
mapped to physical registers). There may be a situation where obtaining the
highest density possible in the first virtual registers leads to requiring an extra
register to assign to all variables. Conversely, minimizing the number of virtual
registers needed to assign to all variables may cause lower density in the first
virtual registers.
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mov c, 1

add a, c, c

add b, a, 2

add d, b, 1

call m(d)

ret d

(a) Code

a

c

b

d

2/2 2/2

3/1 3/1

(b) Interference graph

K Assignment Score

1 (v0 �→c,d) 6

2 (v0 �→c,d), (v1 �→a) 8

3 (v0 �→c,d), (v1 �→a), (v2 �→b) 10

(c) Cumulative register assignment

K Assignment Score

1 (v0 �→c,d) 6

2 (v0 �→a,d), (v1 �→c, b) 10

(d) Traditional assignment

Fig. 1. An example of register allocation. (a) is the code. (b) is the interference
graph for the code. (c) is the (cumulative) offline register allocation result generated
by offline allocator IGC. (d) is the normal non-cumulative register allocation result
generated by traditional allocator GC.

3.2 Example

Figure 1 illustrates cumulative allocation. The code is in register transfer form for
the example. The interference graph shows the presence of interference between
the variables as edges between nodes. The fraction on the side of each node is the
ratio of the score (weighted reference count) to the current degree (the number
of edges) of the node. Cumulative allocation results are in Figure 1 (c). Each
row represents the result with one additional register on top of the previous
row. Three virtual registers are needed in total. The allocation result for row
K includes the results for the rows 0 to K − 1. The ’score’ column shows the
sum of the scores (weighted reference counts) of the virtual registers assigned
in each row. We see that with one register (K = 1), variables c and d are
assigned to virtual register v0. The combined score for c and d is 6 because
c and d appear in the code six times in total. With two registers (K = 2),
that assignment is extended with v1 assigned to a and the combined score
is, thus, 8. Finally, with three registers (K = 3), all variables are assigned to
virtual registers with the combined score 10. Figure 1 (d) shows the result of non-
cumulative allocation. The differences are that in the non-cumulative case, the
mappings for different numbers of registers do not completely intersect, which
means that one cannot encode assignments for all possible numbers of K in one
mapping. Furthermore, the non-cumulative allocator only needs two registers to
assign to all the variables in this example.

4 Offline Register Allocation Heuristics

Offline register allocation heuristics assign virtual registers to live ranges of data,
called webs. The live ranges are not identical to variables since multiple defini-



312 H. Yamauchi and J. Vitek

tions of the same variable can be renamed and each separate live range of the
variable can be assigned to different virtual registers. A web is a transitive closure
of def-use chains that share a definition or use point and is often used as the tar-
get of register allocation in order to avoid inserting unnecessary moves between
registers. A web corresponds to a consecutive multi-entry multi-exit control flow
range which starts at the definition points and ends at the use points. We assign
virtual registers to webs in offline register allocation. The actual offline register
allocation consists of finding webs, computing the interference graph of the webs,
making an ordered list of the sets of non-interfering webs based on one of the
offline register allocation heuristics described later in this section, and renaming
the local variables in the original bytecode so that the webs in the same set
are assigned to the same local variable number in the order (local variable 1 is
assigned to the first web set in the list, local variable 2 is assigned to the second,
and so on, ignoring locals used to pass arguments).

Some of the heuristics described below are based on the optimistic alloca-
tor [4], which repeats allocation whenever a spill occurs and the interference
graph changes. This repetitive part is omitted in the the heuristics because
spilling is handled by the online compiler.

4.1 Linear Packing (LP)

Webs are sorted into a list in non-increasing order of scores (weighted reference
counts). By linear-scanning over the list, we merge together the webs that are
consecutive in the list and do not interfere with each other. At the end, we obtain
a list of web sets where consecutive web sets interfere with each other. We sort
the list according to the combined scores of the web sets. The ith virtual register
is assigned to the ith web set in the list. This heuristic has a O(n log n) time
complexity where n is the number of webs (due to sorting).

4.2 Greedy Packing (GP)

This heuristic is equivalent to that of Azevedo et al. [2] and Sites [19]. As with
LP, webs are sorted into a list in non-increasing order of scores. We iterate
the following process until all webs are picked: Keep picking the web with the
highest score in the list that does not interfere with the already picked webs in
this iteration, until there are no more such web left in the list. Each iteration
produces a set of webs. Eventually, we obtain a list of web sets. We sort the
list according to the combined scores of the web sets. The ith virtual register
is assigned to the ith web set in the list. This heuristic has a quadratic time
complexity in the number of webs.

4.3 Exact Graph Coloring (EGC)

This heuristic is based on the optimistic graph coloring allocator. We merge
webs by performing a binary search for the minimum number of virtual registers
needed to assign to all webs, using the optimistic graph coloring allocator. We
obtain a set of web sets, each of which is to be assigned to the same virtual
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register. We sort the set into a list of web sets according to the combined scores
of the web sets. The ith register is assigned to the ith web set in the list. Even
with the binary search technique, this heuristic may have to run the underlying
graph coloring allocator many times and may take a relatively long time. The
heuristic of Jones et al. [10] based on [6,3] seems comparable to EGC.

4.4 Incremental Graph Coloring (IGC)

This heuristic is also based on the optimistic graph coloring allocator. We merge
webs by incrementally running the optimistic graph coloring allocator for only
one register at each iteration. After each iteration, we remove the allocated webs
out of the interference graph. We obtain a list of web sets in the end. We sort the
list according to the combined scores of the web sets. The ith register is assigned
to the ith web set in the list.

To compare the cumulative register allocation heuristics above with a tradi-
tional non-cumulative register allocation heuristic, we also include the traditional
optimistic graph coloring allocator in the measurements, which we call GC.

5 Method Inlining and Register Table Merging

Register Table Merging (RTM) is a technique used to perform online method
inlining by reusing offline register assignments for individual methods. It is sim-
ilar to the merge sort algorithm and described as follows. We have a register
table for each method computed offline. These tables contain virtual registers
sorted in the order of non-increasing scores. When we inline method B (callee)
into another method A (caller), we combine the register tables of A and B into
a single register table using the following algorithm.

First, we multiply the scores of the virtual registers in B’s register table by
10depth where depth is the loop nesting depth of the inlining site in A. We
then repeat the following process until we reach the end of either A’s or B’s
register table: we pick the virtual register with the higher score between A’s top
register and B’s top register and append it to the register table of the combined
method. After the above loop, if there are some registers left either in A’s or B’s
register table, the remaining registers are appended to the combined table. The
combined register table is already sorted and the virtual registers are renamed.
We update the combined method body with the new register names to obtain
the final combined method body. RTM has a time complexity of O(a + b) where
a and b are the size of A’s and B’s register table, respectively. The algorithm is
described in Figure 2.

Figure 3 shows an example of RTM. Suppose that there is an inlining site
where a method (callee) is inlined in another method (caller). The inlining site
is in a nested loop (the loop depth is 2). The caller and the callee have the
register tables shown in Figure 3 (a) and (b), respectively. These register tables
are computed offline. The merging result is shown in Figure 3 (c). This table
shows the list of virtual registers of the combined method, their scores, and the
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Input:
a (virtual register array sorted by score for method A (caller))
b (virtual register array sorted by score for method B (callee))
depth (loop nest depth of the inlining site in A)

Output:
c (virtual registers for combined method)

map := make a hash map
ia := 0, ib := 0, ic := 0
while ia < a.length and ib < b.length

if a[ia].score ≥ b[ib].score * 10depth

c[ic] := make a new virtual register with score: a[ia].score
put (a[ia], c[ic]) into map
ia := ia + 1, ic := ic + 1

else

c[ic] := make a new virtual register with score: b[ib].score * 10depth

put (b[ib], c[ic]) into map
ia := ia + 1, ib := ib + 1

if ia < a.length
for i := ia to a.length-1

c[ic] := make a new virtual register
with score: a[i].score

put (a[ia], c[ic]) into map
ia := ia + 1, ic := ic + 1

if ib < b.length
for i := ib to b.length-1

c[ic] := make a new virtual register with score: b[i].score * 10depth

put (b[ib], c[ic]) into map
ib := ib + 1, ic := ic + 1

update virtual registers in the combined method body using map

Fig. 2. Inlining and Register Table Merging

mapping from the two register sets of the caller and the callee to the merged
register set of the combined method.

This merging algorithm, of course, does not in general give as good register
allocation results as redoing full-scale register allocation after method inlining.
However, our goal is to achieve non-optimal but acceptable level of allocation
quality for fast compilers in exchange for short online compilation time. We will
see below how this algorithm performs in comparison with results from doing a
full-scale register allocation after method inlining.

Performing some optimizations (e.g., constant propagation) after method in-
lining in order to further optimize the combined method is optional because
we focus on fast compilers and additional data flow analysis and optimizations
would increase compilation time considerably for fast compilers.



Combining Offline and Online Optimizations 315

regs v-registers score

1 v0 1001

2 v1 800

3 v2 753

4 v3 3

(a) Caller’s register table

regs v-registers score

1 v0’ 11

2 v1’ 10

3 v2’ 5

(b) Callee’s register table

regs v-registers score old v-reg

1 v0 1100 v0’

2 v1 1001 v0

3 v2 1000 v1’

4 v3 800 v1

5 v4 753 v2

6 v5 500 v2’

7 v6 3 v3

(c) Merged register table

Fig. 3. An example of register table merging. (a), (b), and (c) show the register
allocation result for a caller method, a callee method, the combined method after the
callee method is inlined in the caller method, respectively, provided that the inlining
site is in a nested loop.

6 Experimental Results

We compare the four different compilation scenarios shown in Figure 4. The
first is online allocation (referred to as ONR) where the register allocation is per-
formed without annotations. The second scenario is offline register allocation
(OFR) where an offline compiler computes register tables and a fast compiler
performs allocation using them. The third scenario is online register allocation
with method inlining (ONRI), the same as ONR except that the compiler inlines
methods before applying register allocation. The last scenario is offline regis-
ter allocation with method inlining (OFRI), the same as OFR except that the
fast compiler performs online method inlining with RTM. In addition, we also
consider the baseline scenario where the compiler does not perform any opti-
mizations and generates code that literally emulates the evaluation stack and
the local variables, as in a typical fast compiler.

The objectives of the measurements are to evaluate the offline scenarios versus
the online scenarios in terms of code size, performance, compilation time, and to
compare the four offline register allocation heuristics. We only consider compilers
that use one intermediate representation (i.e., Java bytecode which includes SIR)
because we are focusing on fast compilers, rather than optimizing compilers that
can afford to build other intermediate representations.

The experimental environment is the following. We use the SimpleJIT com-
piler in the Ovm virtual machine framework [20] on a 1.33 Ghz PowerPC G4
processor with 2 GB of RAM, running Mac OS X. We use the code from Ovm
and SPECjvm98 [7] for measurements.

6.1 Code Size

We measure the space overhead of SIR versus bytecode. There are two sources of
space overhead, additional loads and stores and register tables. Figure 5 shows
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(a) Online register allocation (ONR)

(b) Offline register allocation (OFR)

Source compiler
+

Offline register
allocator

register IR
JIT compiler

Code
generator

source

Source compiler

bytecode

JIT compiler

Code
generator

machine
code

Register
allocator

source
machine

code

Code
generator

(c) Online register allocation w. inlining (ONRI)

(d) Offline register allocation w. inlining (OFR)

Source compiler
+

Offline register
allocator

register IR
Code

generator

source

Source compiler

bytecode
Code

generator

machine
code

Register
allocator

source
machine

code

Code
generator

Inlining

Inlining +
register

table
merging

Fig. 4. The four compile scenarios: in (a) and (c) register allocation (and method
inlining in (c)) is performed online by the fast compiler; in (b) and (d) register allocation
is performed offline, the online compiler uses the register assignments to generate code
(and inlining in (d))

(Kbytes) Total Ovm SPECjvm98

# classes 3,317 2,767 550

Original 8,854 7,291 1,563

LP 10,568(19.4%) 8,472(16.2%) 2,095(34.0%)

GP 10,434(17.8%) 8,374(14.9%) 2,059(31.7%)

EGC 10,435(17.9%) 8,375(14.9%) 2,060(31.8%)

IGC 10,423(17.7%) 8,366(14.8%) 2,056(31.5%)

Fig. 5. The code size overhead of SimpleIR

the space overhead in terms of the class file size for each of the offline register
allocation heuristics. The overall space overhead is 15-34% (18-20% overall).
Previous work reports overheads of 100% [2] and 31% [10].

6.2 Offline Translation Time

We measure the time for offline translator to convert Java bytecode into SIR.
This involves: (a) Eliminating subroutines (by duplicating the subroutine body
for each subroutine call site), (b) Inserting loads and stores to make the
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(sec) Total Ovm SPECjvm98

# classes 3,317 2,767 550

LP 629 395 234

GP 676 426 250

EGC 948 541 407

IGC 668 437 230

Fig. 6. The offline bytecode translation time

evaluation stack empty between core instructions and at basic block bound-
aries, (c) Introducing extra local variables to let local variables have only one
consistent type for the entire method, (d) Performing several simple dataflow
optimizations such as constant propagation, copy propagation, and dead code
elimination, (e) Applying one of the offline register allocation heuristics (includ-
ing liveness analysis needed), (f) Computing register tables, and (g) Writing the
converted code into class files.

Figure 6 shows the offline translation time for the four different offline allocation
heuristics. EGC takes the longest translation time because it needs to iterate the
graph coloring heuristic to find the minimal number of virtual registers. LP is the
fastest overall due to its simplicity. The two other heuristics came relatively close.

6.3 Performance

Next, we measure the execution time of the seven benchmarks of SPECjvm98 to
evaluate the steady-state performance of the generated code. The PowerPC G4
processor has 32 32-bit general purpose registers (GPR) and 32 64-bit floating
point registers (FPR). We use 15 GPRs for the register allocation of the inte-
ger and reference type virtual registers (local variables) and 13 FPRs for the
float and double type virtual registers. We do not assign registers for long typed
virtual registers. The rest of the registers are used for argument and scratch
uses. To share a single set of physical registers (e.g., GPRs) for multiple virtual
register sets (e.g., integer and reference virtual registers), we merge two regis-
ter tables into one register table before assigning virtual registers to physical
registers.

The method inlining heuristics we use is the following. We inline all methods
(callees) that are private, static, or final, and whose bytecode size is less than or
equal to 27 bytes. The maximum inlining depth is 5. The maximum caller code
size is 240 bytes. We do not attempt to perform devirtualization or inlining of
non-final virtual methods.

The results for the two online scenarios (ONR and ONRI) and the eight of-
fline scenarios (OFR and OFRI for each of LP, GP, EGC, and IGC) are shown in
Figure 7. They are the averages of nine runs. For the online scenarios, we used
the standard optimistic graph coloring allocator GC. The rightmost bars show
the geometric means over the seven benchmarks. Method inlining contributes
about a 10% overall performance gain. As expected, with or without method in-
lining, the online scenarios ONR and ONRI result in the best overall performance.
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Fig. 7. The normalized SPECjvm98 execution time (steady state performance) of the
two online scenarios and the eight offline scenarios

However, the quality difference between the (online) traditional register allo-
cation, which needs the fixed number of registers, and the (offline) cumulative
register allocation, which does not, turns out to be small. Second, the quality
difference between register allocation after inlining (ONRI) and register alloca-
tion before inlining (OFRI), that is the phase ordering problem between register
allocation and method inlining, is also small due to RTM.

Comparing the four heuristics (new heuristics LP and IGC, and GP and EGC from
the previous work), we can derive the following observations. First, without inlin-
ing, LP overall performs the best. This is surprising because of LP’s simplicity, and
may imply that, without inlining, we have a sufficient number of physical registers
for many methods (i.e., small methods), and that the quality differences among
the heuristics do not stand out. This is actually supported by Figure 8, which
shows the overall SPECjvm98 results with varying numbers of registers used for
allocation. LP perform worse than the other heuristics with fewer registers. Sec-
ond, with inlining, IGC achieves the best overall results. This implies that IGC,
with sufficient registers, tends to work better for large methods that are produced
after inlining. Third, unexpectedly, EGC do not work well. However, EGC seems to
work well in some cases with fewer registers, as indicated in Figure 8.

We also compare the four major scenarios: the baseline compilation, the online
register allocation (ONR and ONRI), the offline register allocation (OFR and OFRI
with IGC), and the optimizing compilation. The baseline compilation does not
perform any optimizations and the optimizing compilation performs the highest
level of optimizations. Figure 9 shows the results. The online or offline scenarios
achieve about 2.5 times lower performance than the optimizing scenario whereas
the baseline compilation is about 5 times lower.
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Fig. 8. The SPECjvm98 geometric means with varying numbers of allocated registers

6.4 Compilation Time

We measure the online compilation time in an ahead-of-time compilation setting.
This is not what we advocate since a fast compiler is ideally invoked in a just-in-
time manner, but simply a mechanism we use to evaluate the compilation time
in this paper.

Figure 10 shows the compilation time results. The compilation times are in
milliseconds and shown with the relative lengths compared to the baseline compi-
lation time (in parentheses) and with the ratio of compilation time to the sum of
the compilation time and the execution time for SPECjvm98 (in square brack-
ets). The baseline compilation and the offline scenario compilations scans the
input bytecode once for code generation. The offline scenarios, in addition, need
to parse the register table annotations from the class files, merge the register ta-
bles (e.g., integer and reference tables) before code generation, and perform the
light-weight code verification to check that the input bytecode complies with SIR
during code generation. Without inlining, the four heuristics have the compila-
tion overhead of about -9 to 78% (20-25% on the average) from the baseline. The
compilation overhead is higher for SPECjvm98 (72-78%) because there are some
large methods whose register table tends to be large. With inlining, the compi-
lation time is 1.8-3.2 times (2.2-2.34 on the average) longer than the baseline.
SPECjvm98 needs up to a 3.2 times longer compilation time with inlining. The
online scenario compilation time includes the time to perform control flow graph
construction, optional inlining (if ONRI), liveness analysis, the traditional graph
coloring allocation (GC), and code generation. The overall online scenario com-
pilation time is longer than the baseline scenario by a factor of 15.9 (19.3 with
inlining). We believe that the offline scenario compilations achieve high cost-
performance considering the compilation time overhead and the performance
gain, compared to the online compilations.
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Fig. 9. The normalized SPECjvm98 execution time (steady state performance) of the
baseline scenario, the two online scenarios, the two offline scenarios (IGC), and the
scenario with the optimizing compiler. The bars are normalized against the optimizing
scenario.

(msec) Total Ovm SPECjvm98

# of methods 9523 6761 2762

baseline 6880 (1.00) 4526 (1.00) 2354 (1.00) [0.004]

ONR 71984(15.90) 27014(5.97) 44970(19.10) [0.136]

ONRI 87153(19.25) 33768(7.46) 53385(22.67) [0.170]

OFR(LP) 8242 (1.20) 4136 (0.91) 4106 (1.74) [0.014]

OFRI(LP) 16082 (2.34) 8644 (1.91) 7438 (3.16) [0.028]

OFR(GP) 8504 (1.24) 4553 (1.01) 3951 (1.68) [0.014]

OFRI(GP) 15159 (2.20) 8202 (1.81) 6957 (2.96) [0.025]

OFR(EGC) 8431 (1.23) 4233 (0.94) 4198 (1.78) [0.014]

OFRI(EGC) 15567 (2.26) 8367 (1.85) 7200 (3.06) [0.026]

OFR(IGC) 8288 (1.20) 4231 (0.93) 4057 (1.72) [0.013]

OFRI(IGC) 15363 (2.23) 8162 (1.80) 7201 (3.06) [0.027]

Fig. 10. The online compilation time

7 Related Work

Sites [19] used a simple packing heuristic equivalent to GP on Pascal U-Code.
Gupta et al. [8] and Callahan et al. [5] proposed compositional graph coloring
register allocation heuristics. The interference graph of a procedure is decom-
posed into subgraphs. Subgraphs are colored separately and are combined into
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a single graph. These two approaches are analogous to register table merging
in our work in the sense that subparts of programs are register-allocated sep-
arately and the allocation results are combined together. However, these two
approaches are different from our work because their approaches are for online
register allocation where the number of available colors is known at allocation
time.

8 Conclusions

We investigated the interplay of two of the most effective optimizations in object-
oriented programs: register allocation and inlining in a combination of offline and
online compilation, for fast dynamic compilers. With offline register allocation
heuristics, SIR, and RTM, we achieved performance very close to that of the
online allocation scenarios, with significantly shorter online compilation time.
Compared to the baseline compilation, the offline scenarios achieved good cost-
performance with about 80% (99% with inlining) better performance, 20% of
code size overhead, and 25% (a factor of 2.3 with inlining) online compilation
overhead on the average for our benchmark set.
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Abstract. We present a method to visit all nodes in a forest of data
structures while taking into account object placement. We call the tech-
nique a Localized Tracing Scheme as it improves locality of reference
during object tracing activity. The method organizes the heap into re-
gions and uses trace queues to defer and group tracing of remote objects.
The principle of localized tracing reduces memory traffic and can be used
as an optimization to improve performance at several levels of the mem-
ory hierarchy. The method is applicable to a wide range of uniprocessor
garbage collection algorithms as well as to shared memory multiproces-
sor collectors. Experiments with a mark-and-sweep collector show per-
formance improvements up to 75% at the virtual memory level.

1 Introduction

Many algorithms require visiting all objects in a forest of data structures in a
systematic manner. When there are no algorithmic constraints on the visiting
order, we are free to choose any strategy to optimize system performance. This
paper examines an optimization of object tracing to improve performance in a
memory hierarchy. The basic idea is to delay the tracing of non-local objects and
to handle them all together on a region-by-region basis. We call this a localized
tracing scheme (LTS).

An LTS organizes its visit of the heap based partly on the graph of objects
and partly on the location of objects. A consequence is that LTS can be memory
hierarchy friendly, which means we are able to optimize visits of objects at
different levels of the memory hierarchy, including cache, virtual memory and
network. At one level, LTS can be used to reduce paging and keep object tracing
in main memory as much as possible. At another level, as on-chip cache memory
increases in size, LTS may be used to minimize traffic between cache and main
memory. LTS may also be used in modern portable devices, where relatively
large and slow flash memory cards extend the smaller and faster device memory.

Our LTS technique is based on dividing the heap into regions with a trace
queue associated to each region to hold a list of objects to visit. Trace queues
are the origin of the performance improvements displayed by the LTS. They are
used to delay the tracing of remote objects, allowing tracing to concentrate on
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local objects. This enhances locality of reference by relying on object location,
rather than object connectivity, to order tracing. The sizes of regions and trace
queues are determined by the level of the memory hierarchy that we wish to
optimize. For example, to obtain a cache-conscious algorithm, a region and the
trace queues should be small enough to fit entirely in cache.

This idea may be applied to memory management, where reachable objects
must be visited as part of garbage collection. Uniprocessor garbage collection
is mature and offers satisfactory performance for many applications. In fact,
garbage collection is now an integral part of the run-time for popular program-
ming languages, such as Java and C#, which serve as the delivery platform for
widely used applications. Improvements in garbage collection technology can
therefore have impact on a broad user base.

We note that adding LTS to an existing collector is a relatively easy oper-
ation. This consideration is important in practice, where vendors are reluctant
to make significant modifications to products’ memory management for fear of
introducing bugs. We have found it to be straightforward to modify two garbage
collectors to use LTS, that of the Aldor programming language [1,2] run-time
support and that of the Maple computer algebra system [3].

The impact of localizing tracing depends on the garbage collection method
in use: Mark-and-sweep collectors first visit all live objects, marking them, and
then sweep the memory area to recover unused space. Optimization of memory
traffic during the sweep phase has been considered by Boehm [4]. We observe
that memory hierarchy traffic can also be improved during the mark phase using
LTS. Since objects do not move in memory with mark-and-sweep, the benefits
of LTS are similar at each GC occurrence. Improvements of the overall GC time
decrease when few objects are live. In this case, the mark phase is short and
optimizations have a small impact.

Stop-and-copy garbage collectors can move objects to new locations at each
GC occurrence. To do this, they must visit all live objects. Generational col-
lectors [5] also use tracing because each generation is handled by a copying or
mark-and-sweep collection algorithm. In these cases the tracing may be per-
formed using LTS.

The rest of this paper is organized as follows. Section 2 describes a family of
localized tracing algorithms. Section 3 gives an example to illustrate the LTS.
Section 4 presents an informal proof of correctness for this algorithm. Section 5
details our experiments and results with the GC for the Aldor run-time environ-
ment. Section 6 explores advantages and drawbacks of the LTS in a multiproces-
sor environment. Section 7 discusses related work in various garbage collection
settings. Section 8 suggests directions for future work and concludes the paper.

2 The Localized Tracing Scheme

2.1 Depth-First Tracing

We start by considering the usual recursive object tracing scheme. This will be
useful for comparison with our local tracing algorithm.
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main()

for each root r { trace(r) }

trace(p)

o := object to which p points

if isMarked(o), return.

mark o

for each valid pointer p’ in o { trace(p’) }

The operation mark has its meaning specified by context. For example, a mark-
and-sweep collector simply sets a bit corresponding to the object, while a copying
collector moves this same object to a “live area.” In any case, the only property
we rely upon is that it is possible to test whether an object is marked using
isMarked. We use this to ensure termination of the LTS process. It does not
add to the principal idea of the optimization we propose. Instead, we focus on
how objects are visited.

We observe that the algorithm presented above uses a depth-first traversal.
While elegant, there are two problems with this technique:

The first problem is that recursion can be very deep and the associated overhead
of stack activity can be expensive (allocation/deallocation of stack frames, context
saving, etc.) This can be addressed with a combination of tail recursion, explicit
stack management and pointer reversal. Pointer reversal temporarily modifies the
heap, however, which creates problems in multi-threaded environments.

The second problem is that the topology of the graph of objects has a direct
influence on traffic within the memory hierarchy. A traditional tracing algorithm
does not take advantage of the relative locations of objects in the heap, possibly
resulting in very bad locality of reference. For example, a page may be brought
from disk to main memory to visit only one object even if other live objects are
made accessible.

In this paper we demonstrate the possibility of improving on both aspects by
transforming the depth-first tracing process into a “semi-breadth-first” one.

2.2 A Family of Tracing Algorithms

The principal idea behind our tracing technique is to defer visiting objects that
lie outside a working set by maintaining queues of deferred pointers in fast
memory (cache for example). When a queue becomes full, the deferred visits are
made, altering the working set in a controlled fashion. This idea to localize the
tracing process can be applied with minimal, localized modification to existing
trace-based garbage collectors.

The deferred trace queues can be managed in a number of ways:

– One may keep all deferred object pointers in a common list, allowing or
disallowing duplicates. When the list becomes full, it is analyzed to determine
how to alter the working set. This has the advantage that the memory of
the global queue is fully used, but the cost of the analysis may outweigh the
benefit of making the optimal choice of working set alteration.
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– One may associate a sub-queue to each range of addresses (heap region),
with the number of ranges and size of sub-queues being parameters. Deferred
object pointers are added to the appropriate sub-queue, either allowing or
disallowing duplicates. When a queue is full, the associated region is added
to the working set and visits are made. This has the advantage that deferring
visits is fast, but the disadvantage is the deferred trace queue as a whole may
be largely empty. This may be addressed by dynamically adjusting the size
of the sub-queues based on use.

We have identified six strategies: { common list, static sub-queues, dynamic
sub-queues} × { duplicate pointers allowed, not allowed }. We would expect
the sub-queue strategies to be best when the far memory (RAM or secondary
storage) speed is within a few orders of magnitude of that of the close memory
(cache or RAM). Beyond this, we would expect the common list strategy to
yield better results because here it is more important to avoid remote memory
references.

Note that performing the deferred visits to one region may cause the trace
queue of a second region to fill. At this point, starting to trace in the second
region may cause the queue for the first region to fill. If both regions’ deferred
trace queues are nearly full and there are too many mutually referencing pages,
local memory access can be lost. This situation degenerates to the usual handling
of tracing, but with additional overhead. The problem may be avoided by taking
one additional action: before performing the deferred marks on a region, the
trace queue could be flushed to local store in the region itself or in a shared
pool. This saved queue could then be substantially larger than the per-region
queue maintained in fast memory.

2.3 Algorithm

We present a tracing algorithm where trace queues are associated with each
heap region. This is the static sub-queues allowing duplicates strategy, described
above. To allow fast access to these queues, they are contained in one contiguous
area that we choose to be small enough to be maintained in fast memory.

Each region contains objects that will be marked and scanned. The difference
from a regular tracing process is that scanning an object can reveal pointers
inside the region currently collected or outside. If the pointer is to an object in
the region, the object is visited recursively. When it points to another region
of the heap, it means that following this pointer would not be optimal for the
working set (or cache) behavior. In this case, we simply place this pointer in a
trace queue for later examination. We thus maintain the working set for as long
as possible, and reduce the number of cache misses or page faults.

When the process for a region is completed, we proceed to another region. The
policy to determine the order in which regions are visited is implementation- or
even application-dependent. It is likely, however, that choosing a region with
a full or close to full trace queue will improve performance. A simple solution,
avoiding the complexity of choosing the most populated queue, is to use a round-
robin mechanism, and visit regions one by one. This is what we describe here.
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In the initial step of the algorithm, roots are entirely dispatched into the
different trace queues as if those pointers originated from an “external” region.
Once the roots have all been recorded, the actual tracing begins. The complete
algorithm is as follows:

mainTrace()

initialRootsScan() -- initialize the trace queues

while not all queues are empty

{ Q := choose a non-empty trace queue ; emptyQueue Q }

initialRootsScan()

for each root r

{ Q := get trace queue for region where r points; enqueue(Q,r) }

emptyQueue(Q)

while Q is not empty { p := dequeue Q ; followRef p }

followRef(p)

o := object pointed to by p

if (not isMarked(o)) { mark o ; trace o }

trace(o)

for each valid pointer p in o

if (p points to the same region as o)

followRef(p)

else

{ Q:= get trace queue for region where p points; enqueue(Q,p) }

In the above, enqueue and dequeue are operations that add and remove elements
from the trace queues.

2.4 Algorithm with Finite-Size Queues

We describe the static sub-queues strategy. In this scenario, it is required that a
limit is placed on the size of the queues. We thus need to handle the problem of
untimely full queues. In particular, when we visit a region and need to enqueue a
pointer into a full queue, something must be discarded from the current working
set to make room to work with the region with the full queue. Several strategies
can be adopted:

– Empty the queue and deal with the pointer.
– Deal with the pointer first and then empty the queue.
– Empty a percentage of the queue and insert the pointer in the queue.
– Dump the queue to a reserved part of the region.

The first strategy is likely to be the safest, because the first action is to remove
a pointer from the queue so it is not full anymore, thus allowing a new pointer to
be enqueued. A situation where we need to add a new pointer to this queue can
occur if, for example, the first visited object holds a pointer to a region which
also has a full queue. In this case, this region is chosen to be visited and the first
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pointer may be to an object holding a pointer to the region we just visited. The
second strategy allows following the new pointer first, thus removing the need to
keep its information on the stack, but it is likely to become too costly in the case
described above. The third strategy may be chosen when the working set is not
entirely filled by pages of the current region. In this case, a certain number of
pages can be brought into memory without dismantling the current working set.
The last strategy may work in practice. In principle, however, the same problem
must be considered in case the dump area overflows.

For simplicity, we choose to empty the queue first and then deal with the new
pointer. The resulting algorithm is the same as that for unbounded queues, shown
in Section 2.3, but with the calls to enqueue replaced by calls to enqueueRef,
defined as follows

enqueueRef(Q, p)

if (not full(Q)) enqueue(Q,p)

else { emptyQueue(Q) ; followRef p }

3 Example

This section presents an example of the behavior of our algorithm. We follow
the LTS process step by step.

1. First, the roots are copied into the trace queues. See Figure 1(a). (In GC,
these are typically taken from registers, stack and intial static data area.)

2. Once the initial phase is completed, we see that two pointers have been
recorded in the trace queue Q1. We dequeue the first pointer and mark
(using black coloring) the corresponding object. This object holds a pointer
to another object in the same region R1. We continue tracing along this path
to mark the other object. See Figure 1(b).

3. We now use the second pointer recorded in Q1. The object it points to is
marked and scanned, and is found to hold a pointer to an object in R2. This
pointer is recorded in Q2, as shown in Figure 1(c). Once this is done, we see
that Q1 is empty for now, so we continue the process with Q2.

4. We retrieve each pointer of Q2 and mark the objects, as we did for Q1. We
see in Figure 1(d) that Q1 has been updated because an object in R2 was
pointing to R1. Similarly, a pointer is also added to Q3. Once Q2 is empty,
we visit Q3.

5. Q3 is visited and all reachable objects are marked. It is now empty, and we
continue with Q1. Once Q1 has been visited, all queues are empty, and the
tracing process is thus over, as shown in Figure 1(e).

We see that these trace queues act in a manner similar to entry items in a
distributed garbage collection environment. Each pointer included in the queue
indicates that an object of the region is reachable. All objects identified as live
in a given phase of the LTS (depending on the graph of objects, there may be
several phases) will be visited before starting the visit of another region, thus
improving locality of treatment.
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Fig. 1. Local Tracing Scheme example

Another comparison can be made: our trace queues are simply remembered
sets that are used to keep track of cross-boundary pointers. Note that trace
queues may contain pointers to objects either marked (black, in the usual termi-
nology), being marked (gray) or not yet traced (white), exactly like remembered
sets.

4 Correctness of LTS

We provide an informal proof that LTS algorithm rephrases a regular GC mark
phase algorithm. We first show correctness with the assumption that trace queues
have infinite size (i.e. we can never reach a state where a queue is full). Later
we treat the case of finite queues.

The LTS algorithm has two phases: initial root scan and trace phase. The
code for the initial root scan is a simple recording of the roots. We show the
trace phase is correct: that it is safe (marks all live objects), complete (does not
mark any garbage) and terminates.

Termination: The number of times trace is called is bounded by the number
of calls to mark, which is in turn bounded by the number of objects. After the
initial root scan, enqueue is called only from trace, so the number of calls to
enqueue is also bounded. The depth of recursion (through followRef) for a call
to trace is limited by the bound on the number of calls to trace. Therefore
any call to trace terminates, and so does any call to followRef. This, together
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with the fact that the number of calls to enqueue is bounded, gives termination
of emptyQueue and mainTrace.

Safety: Because we have termination, we know that every pointer that is en-
queued is eventually dequeued and handled. Handling a pointer to an unmarked
object entails marking the object and enqueuing all the valid pointers it contains.
All reachable objects are therefore handled.

Completeness: Only reachable objects are marked.

For the algorithm with bounded queues, we have:

Termination: The only obstacle to termination would be to indefinitely cycle
through queues (emptying Qa fills Qb, so we need to empty Qb, but this re-fills
Qa). We guarantee progression by dequeuing first (thus changing the state of
the queue to “non-full”). Emptying a queue will treat at least one object, and
since there are a finite number of objects it is impossible to indefinitely cycle
through queues.

Safety: There is no loss of reference. The only case where this might happen with
fixed size queues is when a queue is full and the reference we want to add to the
queue is lost. However, the algorithm specifies that once the full queue has been
emptied, we actually deal with this reference.

Completeness: The size of queues has no impact on the visited objects. We still
start from the roots, in the same way the non-LTS algorithm does. Garbage is
still guaranteed to be found.

5 Experiments and Results

5.1 The Test Environment

We implemented and tested LTS using the garbage collector of the Aldor language
environment as a test harness. To support multi-language programming, the Aldor
implementation employs a conservative mark-and-sweep GC. We compared the
performance of various LTS-based mark phases with that of the usual depth-first
mark phase. Our experiments have focused on improving paging performance, but
we also made preliminary tests with cache-conscious configurations.

Finding appropriate standard benchmarks for garbage collection algorithms
is quite difficult. We found that GC benchmarks are quite rare and macro-
benchmarks usually focus on applications with modest memory footprint, e.g.
20-30MB (see [6] and [7]). In particular, we did not find any standard benchmark
using heaps larger than the normal size of physical memory. In order to permit
careful study of LTS, we therefore constructed a set of micro-benchmarks. Each
of these tested a particular kind of memory use. This allows greater understand-
ing of the range of possible behaviours of LTS than macro-benchmarks would
provide. In this context, we built a test suite that uses small programs by to-
day’s standards of desktop machines but that helps us confirm that the LTS is
indeed an appropriate solution for large applications. Note that our tests are
obviously not designed to represent real-life programs; rather, we have tuned
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them to exercise specific situations to help us better understand the limits of
the LTS.

The precise nature of any improvement from LTS will of course depend on
the relative speeds and sizes of the relevant two levels of the memory hierarchy.
We expect the qualitative aspects to remain the same, however. Our tests were
conducted with a 500 MHz Pentium III, with a UDMA66 hard disk and running
Redhat Linux 7.1 (kernel 2.4.2). We were interested in testing our algorithm in
an environment with a heap larger than physical memory. Since testing very
large programs is time-consuming, we simulated the situation by working with
programs using heaps of up to 178MB while limiting the amount of main memory
available to the operating system to 32 MB. A preliminary form of these results
was presented in [8].

5.2 The Benchmarks

Test 1: Fit in RAM (6MB used/32MB primary memory) The graph of objects
fits entirely in RAM. There is no possibility of swapping so we expect no gain
from LTS. This test allows us to quantify the overhead due to the extra man-
agement of regions.

Test 2: Linear structure (90MB used/32MB primary memory) Memory is filled
with a linked list of large objects, with the links of the list in ascending address
order. Here we observe paging, but the LTS does not change the order in which
objects are visited. This test thus also allows us to quantify the LTS overhead.

Test 3: Parallel list creation (90MB used/32MB primary memory) Memory is
filled with multiple parallel linked lists. Each list spans several consecutive re-
gions and has its links in reverse memory order. All lists are pointed to by arrays
in the first region. Depth first tracing would access objects in multiple regions
for the first list, then the same regions again for the second list, etc. LTS should
avoid this.

Test 4: Parallel list creation and use (178MB used/32MB primary memory) This
test represents a more general memory situation. As before, lists are pointed to
by arrays in the first region. Once all lists are created, a mutator loop is started.
First, lists are swapped to allow the order of marking to be different from the
original structure. Then, pointers to some lists are dropped, creating garbage.
Finally, new parallel lists are created to re-populate the arrays. This is closer to
a “real” application.

Test 5: Pointers everywhere! (178MB used/32MB primary memory) Here the
arrays pointing to the lists are spread throughout the heap rather than being
restricted to the first region.

Test 6: Cons-reversed lists (178MB used/32MB primary memory) Test 4 is mod-
ified to create lists linked in ascending memory order.
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Test 7: Mixed-order lists (178MB used/32MB primary memory) Similar to Test
6, but only every second list is in ascending memory order. The others are in
reverse memory order. The arrays pointing to the lists are still located at the
beginning of the heap. This mixed order shows the behavior of the LTS in the
presence of data structures that are accessible from different regions.

Test 8: Mixed-order lists with pointers everywhere (178MB used/32MB primary
memory) This test is a combination of Test 5 and Test 7. Arrays are spread
all over the heap while some lists are in reversed order and others are not. We
hope to observe the behavior of the algorithm in presence of a graph of objects
evolving in a less obvious manner than previous tests.

The details of the object sizes is as follows: Test 1 (Fit in RAM) used 600
linked lists, each of length 100. Test 2 (Linear structure) used 50 lists, each of
length 15,000. All other tests used 3000 lists, each of length 500. The leaf objects
contained in the lists were of three sizes: 16, 52 or 100 bytes.

5.3 Test Results

The timing results for the tests are displayed in Figure 2. For each set of parame-
ters, the ratio of LTS to Non-LTS times is given. Tests were run three times each
and the numbers shown here are the averages. We observed very little variation
in the results (as can be expected because these tests are not random).

The table displays the test number as the header of each column. The row
labels have the following meaning:

– Non-LTS corresponds to the results obtained with a regular tracing algo-
rithm.

– LTS-XX-YY shows the results using the LTS with a region size of XX MB
and a total size for the trace queues of Y Y KB. For example, LTS-4-512
corresponds to a test with a region size of 4MB and trace queues of 512KB.

– Total app time is the total application time, including the time taken by the
Non-LTS GC.

We make the following observations:

Test 1: Fit in RAM This test illustrates a situation where there is no benefit
in enhancing locality of reference. We measure that the overhead of maintaining
the queues is about 25%. However, we note that this is for a total application
time of 1 second, and the actual overhead is low in absolute terms. Also note
that this overhead disappears if the GC is configured to use the LTS only when
it can be beneficial.

Test 2: Linear structure This test measures the other case for which the LTS
approach is not well suited: With a single linked list, there are very few cross-
region pointers and we see the basic LTS overhead. We see that by choosing
carefully the size of the region and the queues, this overhead can be brought
down to a reasonable level (15%).
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Test 1 Test 2 Test 3 Test 4

Non-LTS Marking 0.297 53 274 1222

LTS-4-256 0.366 (1.23 ) 62 (1.17 ) 127 (0.46 ) 322 (0.26 )
LTS-4-512 0.366 (1.23 ) 65 (1.23 ) 128 (0.47 ) 317 (0.26 )
LTS-4-1024 0.366 (1.23 ) 61 (1.15 ) 131 (0.48 ) 312 (0.25 )

LTS-8-256 0.371 (1.25 ) 68 (1.28 ) 131 (0.48 ) 326 (0.27 )
LTS-8-512 0.371 (1.25 ) 72 (1.36 ) 145 (0.53 ) 352 (0.29 )
LTS-8-1024 0.372 (1.25 ) 69 (1.30 ) 141 (0.51 ) 344 (0.28 )

LTS-16-256 0.371 (1.25 ) 83 (1.57 ) 139 (0.51 ) 338 (0.28 )
LTS-16-512 0.371 (1.25 ) 75 (1.41 ) 141 (0.51 ) 350 (0.29 )
LTS-16-1024 0.371 (1.25 ) 80 (1.51 ) 141 (0.51 ) 355 (0.29 )

Total app time 1.000 108 404 1923

Test 5 Test 6 Test 7 Test 8

Non-LTS Marking 1831 1217 1263 1869

LTS-4-256 755 (0.41 ) 341 (0.28 ) 352 (0.28 ) 1296 (0.69 )
LTS-4-512 958 (0.52 ) 342 (0.28 ) 336 (0.27 ) 1311 (0.70 )
LTS-4-1024 1061 (0.58 ) 347 (0.28 ) 350 (0.28 ) 1426 (0.76 )

LTS-8-256 1145 (0.62 ) 363 (0.30 ) 329 (0.26 ) 1321 (0.71 )
LTS-8-512 1025 (0.56 ) 358 (0.29 ) 332 (0.26 ) 1385 (0.74 )
LTS-8-1024 1039 (0.57 ) 361 (0.30 ) 322 (0.25 ) 1434 (0.77 )

LTS-16-256 872 (0.48 ) 368 (0.30 ) 338 (0.27 ) 1163 (0.62 )
LTS-16-512 921 (0.50 ) 381 (0.31 ) 353 (0.28 ) 1144 (0.61 )
LTS-16-1024 994 (0.54 ) 376 (0.31 ) 360 (0.28 ) 1156 (0.62 )

Total app time 3038 1697 1946 3051

Fig. 2. Marking times (in seconds) for different parameters. The LTS/Non-LTS ratio
is shown in parentheses.

Test 3: Parallel list creation This is the first test where we can observe the
advantage of using the LTS. As explained before, lists in this example are created
in parallel, resulting in many cross-region pointers. Following one list across
several pages, then re-visiting the same pages for a second list, etc., is very
inefficient. LTS cuts the marking time by half and the total application time by
a third.

Tests 4, 6, and 7: These tests give significant results: the structure of the lists
in memory (from beginning to end, or end to beginning, or mixed) does not
seem to influence the behavior of the tracing process. Here we see up to 75%
improvement in marking time and a 50% improvement in total time.

Tests 5 and 8: Although speedups are less spectacular, they are still quite inter-
esting: between 38% and 59% for Test 5 and between 23% and 39% for Test 8.
These results can be explained by the fact that “roots” (i.e the arrays that hold
the lists) are scattered in memory. Instead of gathering all of them in the same
set of pages, the GC has to swap extra pages in to reach these special objects.
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5.4 Discussion

We observe a loss of performance for applications smaller than main memory or
in which there are only a few objects with cross-region pointers. Although the
overhead can be up to about half, it mostly concerns small applications which
tend to be very fast anyway. For larger problems, however, speedups can be
substantial, up to 75%.

Our algorithm performs better when swap space is involved. Small programs
that fit in RAM do not need LTS. In fact, as emphasized by our experiments,
our modifications will generate some overhead due to unnecessary actions such
as tests to figure out if two objects are in the same region.

We propose a solution to avoid this overhead: we add a test before starting
the tracing process. If the size of the heap is smaller than main memory, then
LTS is not used. If the heap is larger than main memory, we activate the LTS.
Alternatively, if paging statistics are available they may be used to trigger LTS.

At another level, it is also possible to activate LTS in a cache-oriented config-
uration when the heap is smaller than main memory. Further experiments are
required to understand the merits of such an approach.

There are two parameters that can be tuned to control the behaviour of the
LTS: the size of regions and the size of trace queues. The main issue is the choice
of the optimal size of “window of collection” (or “region”). A region should be
large enough to avoid the need for large trace queues and small enough both
to avoid thrashing and to keep a reasonable working set. Obviously, there is no
one best choice, as the size of a region largely depends on the nature of the
applications. In our experiments, we found that region sizes of 4MB gave the
best results most of the time, but this is not always the case (see for example
Test 7 and 8). The second parameter is the size of the trace queues and this is
dependent on the size of a region.

6 Multiprocessor LTS

The LTS organizes the heap in such a manner that parallelization becomes nat-
ural. The heap is divided into regions that can each be mapped to a thread or
a processor. In this section, we discuss various aspects of using the LTS in a
multiprocessor environment.

It is straightforward to assign regions to be handled independently and in
parallel by threads on separate processors. Each thread can scan a group of re-
gions repeatedly and update the different trace queues. Although performance is
likely to improve due to the parallel nature of processing, the organization of the
memory hierarchy can be more complex in a multiprocessor, so specific working
set considerations will be architecture-dependent. The single processor LTS op-
timization controls the working set to reduce inefficiencies within the memory
hierarchy during tracing. A shared memory multiprocessor version should strive
to preserve this essential characteristic.

When the LTS is configured to improve cache behavior, its multiprocessor per-
formance should also be improved. This results from a useful property of certain
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multiprocessor environments: While the heap may be common to all processing
units, there is usually at least one level of per-processor cache. When several
processors are used, each of them will use its cache while accessing objects. An
advantage of the LTS is that cache consistency is maintained very simply by
the assignment of a range of regions to each processor. A given processor will
never visit an object in a region assigned to another one (except in the case of
work stealing as described below, but in this case the region can be reassigned
to another processor).

The only synchronization required is to manage accesses to trace queues and
to identify termination. A simple idea to discover termination is to maintain a
counter of threads going to sleep when no more work is available. If a thread
adds a pointer to a queue, it wakes up the thread associated to that region.
Termination occurs when the last thread goes to sleep. If a thread appears to be
the last one going to sleep, it synchronously checks the counter and the queues
to make sure no reference has been left behind.

A final issue is that of load balancing among processors. It is likely that
regions will be unequally populated. One region may hold a large number of
objects, while others contain no or few objects. In this case, some processors will
starve due to the lack of work. Endo [9] proposed a solution in the form of “work
stealing”[10]. In this case, each thread maintains a “work queue” containing
pointers that the thread should examine next. Once it is empty, there are two
possibilities: Either the thread goes to sleep until something has been put in its
queue or the thread helps other threads by “stealing” pointers from their queues
and inserting them into its own queue.

If work-stealing is used näıvely, the parallel version of the LTS reverts to
Endo’s technique where several processors scan a single region, involving a syn-
chronization mechanism to access objects. This can be avoided by making regions
small enough to assign several regions to one processor. In this case, regions –
instead of pointers – can be stolen. This requires a simple locking mechanism at
the level of regions rather than objects. We believe this coarser-grained approach
could lead to a significant improvement over Endo’s results in some cases.

7 Related Work

This section presents garbage collection techniques – both in uniprocessor and
multiprocessor contexts – that we can relate to the LTS.

Although it is more generally applicable, we have presented LTS primarily
in the context of mark-and-sweep (M&S) collectors. Some have argued that
with recent advances in GC technology, M&S is no longer important. We feel
otherwise. Boehm [11] and Zorn [12] argue that stop-and-copy collectors do
not necessarily perform better than M&S. Particularly, Zorn compares both
techniques in a generational setting and concludes that M&S typically uses 20%
less memory than stop-and-copy, but was only 3%-6% slower on the problems he
tested. While a copying collector apparently improves locality over time, these
analyses show that this factor is not sufficient to clearly improve performance.
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From another perspective, it is increasingly common to use hybrid techniques
to combine the attractive features of various methods; M&S collectors figure
prominently in this setting. Finally, in some settings, e.g. with heavy use of
non-GC aware foreign libraries, conservative M&S is the only viable option.

Generational algorithms divide the heap into “regions” (called generations)
to reduce to a minimum the work done by the collector at each call. Because
each collection of the nursery is focused in a small area of memory, a side-effect
of this organization is to localize data treatment thus reducing page faults and
possibly cache misses. Collecting the old generation often involves collecting
the entire heap. This is sometimes done with M&S and sometimes with other
techniques. In either case, the LTS can be used in the same way as with non-
generational algorithms. We would then benefit from the use of generations and
of an improved trace process for the collection of old generations when large
heaps are collected.

The observation that collecting the old generation is disruptive has been pre-
viously made in MOS [13]. This incremental GC precisely defines the memory
block to examine at each call of the collector for the old generation. It is claimed
that this allows a more suitable solution for real-time applications, for example.
While the LTS does not solve the problem of real-time applications, we believe
it proposes a simple, useful technique to reduce the time spent in collecting the
old generation.

Attardi’s CMM [14] proposes a heap organization similar to the LTS but for a
different purpose. In CMM, each region of the heap is associated with a specific
memory management scheme. This allows potential use of a different GC for each
sub-heap. Consequences for paging and caching behaviors were not considered.
The point of view proposed by the LTS could be used to CMM’s advantage.
The natural technique used by CMM is to allow collectors to follow pointers
even in other sub-heaps to possibly discover live objects in the current sub-heap.
Such out-of-sub-heap pointers could be buffered in trace queues to preserve the
working set of the collector, which is the job of the LTS.

In [15], Boehm studies a technique to improve caching behavior during tracing
of a mark-and-sweep garbage collection. It relies on a standard hardware feature
(which can be found on Intel and AMD platforms, as well as HP RISC machines)
to pre-fetch “child” objects into the cache when an object is examined. When the
object is required by the tracing process, it is already in cache. In comparison,
the LTS improves another aspect of tracing. Instead of importing objects before
they are needed, it keeps objects in cache as much as possible to increase the
probability they will be available in case they are needed. It is likely that both
techniques could be combined.

Boehm [15] also mentions an improvement of the sweep phase that uses a
bitmap to mark dirty pages (i.e. containing live objects). When sweeping mem-
ory, the GC checks the bitmap before examining a page in detail to rebuild its
free list of fixed-sized objects. If the bit is not set, the page can be reclaimed as a
whole. The LTS provides a simple solution to store the bitmap: it may be placed
in the trace queues. In addition to storing pointers, we maintain a bitmap of
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pages in the same memory area. This is useful because trace queues are designed
to fit in main memory (or cache), which also allows fast access to the bitmap. The
overhead is of 1 bit per page, that is 512 bytes for a region of 16MB. Preliminary
experiments showed up to 55% improvement with the Aldor compiler.

The idea of optimizing paging access during garbage collection was mentioned
in [16]. The original objective was to improve performance when collecting the
old generation in a generational garbage collector. The principle was to partition
the heap into sections called buckets that are similar to regions in the LTS. As
mentioned in the paper, limiting the trace activity to one card at a time is also
a solution to avoid paging. This may have the drawback of maintaining book-
keeping information (incoming out-of-card pointers) for a possibly long time.

Hertz et al [17] propose an alternative solution to control paging access. Their
garbage collector is a generational collector using “book-marking” to keep pages
in main memory as much as possible. The proposed mechanism is quite precise as
it associates actions to swapped-out pages. This technique requires modifications
of low-level layers to gain control over the paging system. The LTS takes a
different approach. Although less precise, the solution proposed by the LTS is
simple to put in place and does not require low-level modification of a virtual
machine or operating system: The idea behind LTS is to keep working with
the same set of objects as long as possible. This means corresponding pages
will stay in faster memory for long periods. The LTS approach does not rely
on interfaces that (if available) will differ by operating system and memory
hierarchy level.

Multiprocessor parallel collectors do not benefit from the same attention as
concurrent GCs. However, several techniques were studied: [9] and [18], for exam-
ple. An advantage offered by the LTS compared to the parallel collector described
by Endo et al in [9] is that there is no need for synchronization at the object
level. Even though Endo proposed an optimization to access these objects, a
synchronization mechanism is still required. This can lead to a costly marking
process (although this aspect is not the only issue, as observed in the paper).
Instead of asking each processor to trace a given data structure from beginning
to the end, the LTS limits the activity of each processor to regions of memory.
If a structure steps over a frontier, the rest of its tracing is handled by another
processor. This removes the need for complex synchronization at this level.

We also note that, as mentioned in Section 6, the LTS offers a simple orga-
nization of the heap suitable for a parallel configuration. The advantage is that
uniprocessor and multiprocessor environments requiring mark-and-sweep could
use the same memory management technique with very little modification, and
receive interesting performance optimization.

8 Conclusions and Future Directions

In this paper we described what we have called a “Localized Tracing Scheme,”
a technique to improve performance of tracing activities such as those used in
garbage collectors. The LTS localizes the tracing process by dividing memory



338 Y. Chicha and S.M. Watt

into regions and deferring out-of-region tracing. The idea of deferred pointer
queues is simple to implement and can be readily added to existing collectors.

LTS limits the working set to a region of the heap rather than the entire heap.
If a region can fit largely or entirely in cache, cache misses are reduced. In the
same way, if the region is smaller than available RAM, thrashing due to page
faults diminishes. Consequently, optimizations can be made at different levels of
the memory hierarchy: cache, virtual memory and network.

We have tested this strategy in the context of the Aldor garbage collector,
using a suite of specific micro-benchmarks to observe the behaviour of the LTS
in practice. We obtained up to 75% improvement with a configuration oriented
towards virtual memory optimization.

Finally, we presented how LTS can function in a multiprocessor context. We
observed two axes: (i) independently of any optimization, the organization of
the heap in regions results in a natural setting for parallel garbage collections,
and (ii) parallel GCs in multiprocessor environments may be improved at cache
and virtual memory levels.

We are interested in a number of directions suggested by LTS. First, it has
become a practice in scientific computing to deduce and optimize hardware-
related parameters through dynamic tuning of algorithms. This may be a useful
approach to determine the best sizes for memory regions and deferred pointer
queues. Second, GC implementations often maintain an explicit tracing stack,
rather than relying on functional recursion. It would be interesting to study
different ways of combining deferred pointer queues and the explicit tracing
stack. Third, it would be useful to better understand the performance trade-
offs arising in different strategies to flush full queues. Fourth, with multi-core
processors becoming the norm for personal computing, a full implementation
of the multiprocessor LTS would be of practical interest. Finally, the LTS was
developed for the Aldor language for computations in computer algebra, which
are typically very demanding in dynamic memory use. It would be useful to
implement LTS in a more mainstream environment, such as the MMTk [19],
allowing direct comparisons over a wider range of common benchmarks and
experiments in conjunction with other memory management strategies.
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Abstract. XML transformations are most naturally defined as recur-
sive functions on trees. A naive implementation, however, would load
the entire input XML tree into memory before processing. In contrast,
programs in stream processing style minimise memory usage since it may
release the memory occupied by the processed prefix of the input, but
they are harder to write because the programmer is left with the burden
to maintain a state. In this paper, we propose a model for XML stream
processing and show that all programs written in a particular style of
recursive functions on XML trees, the macro forest transducer, can be
automatically translated to our stream processors. The stream processor
is declarative in style, but can be implemented efficiently by a pushdown
machine. We thus get the best of both worlds — program clarity, and
efficiency in execution.

1 Introduction

Since an XML document has a tree-like structure, it is natural to define XML
transformations as recursive functions over trees. Several XML-oriented
languages, such as XSLT [34], fxt [3], XDuce [11] and CDuce [2], allow the
programmer to define mutual recursive functions over forests. As an example,
consider the program in Figure 1. Let σ〈f1〉f2 denote a forest where the head
is a σ-labeled tree whose children constitute the forest f1, and the tail is a sib-
ling forest f2. The empty forest is denoted by ε and is usually omitted when
enclosed in other trees. The function Main in Figure 1 scans through the input
tree and reverses the order of all subtrees under nodes labelled r by calling the
function Rev. For example, the input tree a〈r〈b〈c〈〉d〈〉〉e〈〉〉f〈〉〉 is transformed
into a〈r〈e〈〉b〈d〈〉c〈〉〉〉f〈〉〉.

A naive way to execute functions defined in this style is to load the entire
forest into memory, so that we have convenient access to the children and siblings
for each node. The input stream of tokens, also called XML events , is parsed
to build the corresponding forest, which is then transformed by the function,
before the resulting forest is unparsed to an XML stream. Loading the entire
tree into memory is not preferable when we have to process large input. However,
� Partially supported by Comprehensive Development of e-Society Foundation Soft-
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Main(ε) = ε

Main(r〈x1〉x2) = r〈rev(x1, ε)〉(Main(x2))

Main(σ〈x1〉x2) = σ〈main x1〉(Main(x2)) if σ �= r

Rev(ε, y) = y

Rev(σ〈x1〉x2, y) = Rev(x2, σ〈Rev x1 ε〉 y)

Fig. 1. A functional program reversing the subtrees under nodes labelled r

many XML transformation languages such as XSLT, fxt, XDuce and CDuce are
actually implemented this way.

To optimise space usage, the programmer may switch to programming style
(e.g SAX [32]). The stream processor reads XML events one by one, and the pro-
grammer defines respectively what to do when it encounters a start tag <σ>, an
end tag </σ>, or end of stream $. Consider performing the same task given the
input <a><r><b><c></c><d></d></b><e> </e></r><f></f></a>. Upon read-
ing the first event <a>, we can output <a> immediately. The next event <r> is
also copied to the output. After that, no output event will be produced for a
while, because there is no way for the processor to know what to output before
the closing tag </r> is read. Between <r> and </r>, the computer reads the in-
put and stores a reversed stream in some environment1. While stream processing
saves memory usage, it is much harder to program in this style.

Can we write a recursive function on forests and have it automatically trans-
formed to a program in the stream processing style, thereby achieve both clarity
and memory efficiency? In this paper, we present a model for an XML stream
processor, and shows how to automatically derive XML stream processors from
a very expressive class of recursive functions on forests.

We have made two main contributions. Firstly, we propose a model for XML
stream processing which is declarative in nature but has an efficient implemen-
tation. The environment can be represented uniformly by a partially evaluated
stream, called a temporary expression. Secondly, we present a method to derive
a stream processor from any function definable in terms of the macro forest
transducer (mft), proposed by Perst and Seidl [26]. The derivation, which can
be seen as a special case of program fusion [30], works by fusing the mft with
an XML parser recast as a top-down tree transducer (tdtt). The fusion is similar
Engelfriet and Vogler’s method of composing a (finitary) tdtt and a macro tree
transducer [6]. but we have a proof that the method works for our tdtt with a
infinite number of states.

This paper summaries our work. Interested readers are also referred to the
full version [22] available online, which contains the proof of the main theorem
and more discussions.

2 XML and the Macro Forest Transducer

For simplicity, we deal with a simplified model of XML with only element nodes,
and assume that the input XML is well-formed.
1 An ‘environment’ is a state storing information needed to carry out the computation.

We use the term ‘environment’ to avoid confusion with mft states.
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Let Σ be an alphabet. A Σ-forest (also called a Σ-hedge [18]), is defined by

f ::= σ〈f〉f | ε,

where σ ∈ Σ and ε denotes the empty forest. We denote by FΣ the set of
Σ-forests. A Σ-forest a〈b〈ε〉c〈ε〉ε〉ε with Σ = {a, b, c} represents the XML frag-
ment <a><b></b><c></c></a>. The concatenation of two forests f1, f2 ∈ FΣ is
written f1f2. The symbol ε, being the unit of concatenation, is often omitted.

The Σ-events , written Σ<>, is defined by Σ<> = {<σ> | σ ∈ Σ} ∪ {</σ> | σ ∈
Σ}. An XML stream is a sequence of Σ-events . We denote by Σ◦

<> the set of
well-formed sequences of Σ-events and denote by ε the empty sequence. The
symbol $ denotes the end of an (input) XML stream, which is also regarded as
an event. We write Σ<>$ for Σ<> ∪ {$}.

Let Σ be an alphabet. The streaming of a forest is the function � 	 :
FΣ → Σ◦

<> defined by �σ〈f1〉f2	 = <σ> �f1	 </σ> �f2	 and �ε	 = ε. For example,
�a〈b〈〉c〈〉〉	 = <a><b></b><c></c></a>.

The macro forest transducer (mft) was proposed by Perst and Seidl [26] as an
extension to the macro tree transducer (mtt) [6] by taking concatenation as a ba-
sic operator. Functional programmers can think of an mft as a recursive function
mapping a forest (and possibly some accumulating parameters) to a forest, with
certain restriction on their shapes — the pattern on the forest extracts only the
label, the children and the sibling of the first tree; the accumulating parameters
cannot be pattern-matched; each function call is passed either the children or
the sibling. We do not propose using the mft as a programming language, but
as an intermediate language. It was shown that mft is in fact rather expressive
[17]. In particular, XPath expressions can be converted to a computation model
weaker than mfts [21]. More discussions will be given in Section 6.

In the convention of mft, a function is called a state and its arity is called its
rank . Let us write N and N+ for the set of non-negative integers including and
excluding 0, respectively.

Definition 1. A macro forest transducer is a tuple M = (Q, Σ, Δ, in, R), where

– Q is a finite set of ranked states, the rank of a state given by a function
rank : Q → N+,

– Σ and Δ are alphabets with Q∩ (Σ ∪Δ) = ∅, called the input alphabet and
the output alphabet , respectively,

– in ∈ Q is the initial ranked state,
– R is a set of rules partitioned by R =

⋃
q∈Q Rq. For each q ∈ Q, Rq consists

of rules of the form q(pat , y1, . . . , yn) → rhs , where n = rank(q)− 1 and
• pat is either ε or σ〈x1〉x2 for some σ ∈ Σ,
• rhs ranges over expressions defined by

rhs ::= q′(xi, rhs , . . . , rhs) | ε | δ〈rhs〉 | yj | rhs rhs

with q′ ∈ Q, δ ∈ Δ, i = 1, 2 and j = 1, . . . , n. Additionally, no variable
xi occurs in rhs when pat = ε.
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Perst and Seidl’s mft, designed for type checking, can be non-deterministic. Since
our focus is on program transformation, our mft’s are deterministic and total.
That is, for each q and σ there is exactly one such rule q(σ〈x1〉x2, . . . ) → rhs .
We will denote its right-hand side by rhsq,σ. Similarly rhsq,ε stands for the right-
hand side rhs of the unique rule q(ε, . . . ) → rhs . If a rule for state q and pattern
p is missing, we assume that there is an implicit rule q(p, . . .) → ε. The semantics
of mft’s is given by translating every state into a function [26]:

Definition 2. Let M = (Q, Σ, Δ, in, R) be an mft. The semantics of a states
q ∈ Q is given by the function [[q]] : FΣ × (FΔ)n → FΔ where n = rank(q)− 1.
Each [[q]] is defined by:

– [[q]](σ〈ω1〉ω2, ϕ1, . . . , ϕn) = [[rhsq,σ]]ρ where ρ(xi) = ωi for i = 1, 2 and
ρ(yj) = ϕj for j = 1, . . . , n,

– [[q]](ε, ϕ1, . . . , ϕn) = [[rhsq,ε]]ρ where ρ(yj) = ϕj for j = 1, . . . , n,

where [[ ]]ρ evaluates the right-hand side with respect to the environment ρ:

[[q′(xi, rhs1, . . . , rhsn′)]]ρ = [[q′]](ρ(xi), [[rhs1]]ρ, . . . , [[rhsn′ ]]ρ),
[[ε]]ρ = ε, [[δ〈rhs〉]]ρ = δ〈[[rhs ]]ρ〉,
[[yj ]]ρ = ρ(yj), [[rhs rhs ′]]ρ = [[rhs ]]ρ[[rhs ′]]ρ.

Definition 3. The transformation induced by an mft M = (Q, Σ, Δ, in, R) is
the function τM : FΣ → FΔ defined by τM (f) = [[in ]](f, ε, . . . , ε).

Example 1. Let Q = {Main ,Rev}, Σ some alphabet containing r and R the
rules in Figure 1 (replacing = by →), then Mrev = (Q, Σ, Σ,Main, R) is an mft.

Example 2. The mft Mhtm = (Q, Σ, Δ,Main, R) defined below reads an XML
document consisting of a title and several paragraphs with some keywords. The
output is a (simplified) HTML document where the para tag is converted to p
and key tag to em. Furthermore, before the ps tag we dump the list of keywords
we collect so far. Text data is denoted by a node with no children.

Q = {Main,Title, InArticle,Key2Em,AllKeys ,Copy},
Σ= Δ = (some alphabet containing English words and the XML/HTML tags below),

R = { Main(article〈x1〉x2)→ html〈head〈Title(x1)〉body〈InArticle(x1, ε)〉ε〉,
Title(title〈x1〉x2)→ title〈Copy(x1)〉,
InArticle(title〈x1〉x2, y1)→ h1〈Copy(x1)〉InArticle(x2, y1),

InArticle(para〈x1〉x2, y1)→ p〈Key2Em(x1)〉InArticle(x2, y1AllKeys(x1)),

InArticle(ps〈x1〉x2, y1)→ h2〈Index〈〉〉 ul〈y1〉 h2〈Postscript〈〉〉 Copy(x1),

Key2Em(key〈x1〉x2)→ em〈Copy(x1)〉 Key2Em(x2),

Key2Em(σ〈x1〉x2)→ σ〈Key2Em(x1)〉 Key2Em(x2) (σ �= key),Key2Em(ε)→ ε,

AllKeys(key〈x1〉x2)→ li〈Copy(x1)〉AllKeys(x2),

AllKeys(σ〈x1〉x2)→ AllKeys(x1)AllKeys(x2) (σ �= key), AllKeys(ε)→ ε,

Copy(σ〈x1〉x2)→ σ〈Copy(x1)〉Copy(x2) (σ ∈ Σ), Copy(ε)→ ε }
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3 XML Stream Processors and Its Derivation

A temporary expression is a partially computed stream of XML events. An XML
stream processor (xsp) defines how to rewrite a temporary expression upon read-
ing each input event.

Definition 4. An XML stream processor is a tuple S = (Q, Σ, Δ, in, R), where

– Q is a (possibly infinite) set of ranked states, the rank for each state given
by rank : Q → N,

– Σ and Δ are (finite) alphabets with Q∩(Σ∪Δ) = ∅, called the input alphabet
and the output alphabet , respectively,

– in ∈ Q is the initial state,
– R = {q(y1, . . . , yn)

χ−−−→ rhs | q ∈ Q, χ ∈ Σ<>$} is a set of rules, where
n = rank(q) and rhs ranges over expressions defined by

rhs ::= q′(rhs , . . . , rhs) | ε | <δ>rhs</δ> | yj | rhs rhs

where q′ ∈ Q, δ ∈ Δ and j = 1, . . . , n. Additionally, the pattern q′(. . . ) does
not occur in rhs for any q′ ∈ Q when χ = $.

3.1 Semantics of XML Stream Processors

The semantics of an xsp is defined by translating every rule of the xsp into a
transition for temporary expressions.

Definition 5. Let S = (Q, Σ, Δ, in, R) be an xsp. A temporary expression for
S, denoted by TmpS , is defined by E ::= ε | <δ>E | </δ>E | q(E, . . . , E)E.

Definition 6. Let S = (Q, Σ, Δ, in, R) be an xsp and s ∈ Σ◦
<>. The transition

over TmpS for an input Σ-event is a function 〈| , |〉 : TmpS ×Σ<>$ → TmpS

defined by

– 〈|ε, χ|〉 = ε,
– 〈|<δ>e, χ|〉 = <δ>〈|e, χ|〉 where δ ∈ Δ,
– 〈|</δ>e, χ|〉 = </δ>〈|e, χ|〉 where δ ∈ Δ,
– 〈|q(e1, . . . , en)e, χ|〉 = (rhs [yj := 〈|ej , χ|〉]j=1,...,n)〈|e, χ|〉 where (q(y1, . . . , yn)

χ−−−→ rhs) ∈ R with q ∈ Q and χ ∈ Σ<>$.

The initial temporary expression is in(ε, . . . , ε). An xsp reads the input stream of
events and updates the temporary expression with the transition 〈| , |〉. The
end of stream is marked by $. Let χ1χ2 . . . χk be the input stream with each
χj ∈ Σ<>. The final expression is 〈|〈| . . . 〈|〈|in(ε, . . . , ε), χ1|〉, χ2|〉, . . . , χk|〉, $|〉. Note
that the final temporary expression is always in Δ◦

<> since, by Definition 4, the
right-hand side of a (q, $)-rule does not contain any unevaluated state q′(. . . ).

Definition 7. The transformation induced by an xsp S = (Q, Σ, Δ, in, R) is
the function τS : Σ◦

<> → Δ◦
<> defined by τS(s) = θS(in(ε, . . . , ε), s$) where, for

e ∈ TmpS ,

θS(e, ε) = e, θS(e, χs) = θS(〈|e, χ|〉, s).
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The induced transformation defines declaratively what the output stream is,
given the input stream. The very reason we program in the stream processing
style, however, is to be able to print out a prefix of the output stream while
reading the input. That is, we would like to ‘squeeze’ some part of the result
from after each event read. This will be described in Section 4.3.

3.2 Deriving Stream Processors from Macro Forest Transducers

Given an mft M = (Q, Σ, Δ, in, R), a stream x, and a function Parse :: Σ◦
<> →

FΣ parsing a stream of events into a forest, the expression �[[in]](Parse(x),
ε, . . . , ε)	 yields a Δ◦

<> stream. If we can fuse the three functions, � 	, [[in]],
and Parse into one, we may have a stream processor. Fusing � 	 and [[in]]
is a relatively easy task. The interesting step is fusing them with the parser.
An XML parser can be written as a top-down tree transducer (tdtt) with an
(countably-)infinite number of states

Parse[1] (<σ>s) = σ〈Parse[1] s〉(Parse[2] s), Parse [1] (</σ>s) = ε,

Parse[i] (<σ>s)=Parse[i+1] si > 1), Parse [i] (</σ>s) = Parse [i− 1] s (i > 1),

Parse[i] ($) = ε.

for every σ ∈ Σ. Note that we do not need a forest transducer for parsing. The
forest is constructed without using forest concatenation. Therefore, although it
returns a forest, Parse is still technically a tree transducer where the forest is
represented by a binary tree. Multiple traversals of s is in fact avoided in the
implementation, to be discussed in Section 4. We will also talk about a more
typical way to specify the parser, and its effects, in Section 6.

Some previous work [24,21,25] talked about fusing a tree transducer for pars-
ing with a transformation, but not one as expressive as an mft. More details
are given in Section 7. Engelfriet and Vogler [6] described how to fuse a finitary
tdtt and a macro tree transducer (mtt). Their method, however, does not apply
directly to our application because Parse has a infinite number of states. Our
derivation from an mft to an xsp, to be presented in this section and proved in
the full paper [22], is basically Engelfriet and Vogler’s transducer fusion extended
to mft’s and specialised to one particular infinitary tdtt, Parse. The readers are
not required to have knowledge of their method.

For a rationale behind the derivation, consider mft M = (Q, Σ, Δ, in , R). For
every state q ∈ Q, we introduce in the derived xsp a set of states {q[i] | i ∈ N+}.
Imagine that we are building forests as we read the input stream of events.
With each start tag, the forest construction descends by one level. The state q[1]
performs the task that the state q in the mft is supposed to do. The number 1
indicates that the current forest will be its input. The states q[i] for i > 1, on
the other hand, represent ‘suspended’ states which will take effect i − 1 levels
above the forest currently being built. The number i denotes the number of end
tags expected. When an end tag is read, the number decrease by one, until the
number reaches 1 and the state gets activated. When a start tag is read, the
number shall increase by one because there is one more start tag to be matched.
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Definition 8. Let M = (Q, Σ, Δ, in, R) be an mft. We define an xsp SP(M) =
(Q′, Σ, Δ, in ′, R′) where

– Q′ = {q[i] | q ∈ Q, i ∈ N
+} where rank(q[i]) = rank(q)− 1,

– in ′ = in [1] ∈ Q′,
– R′ contains rules introduced by the following three cases:

xsp-(1). for all q ∈ Q and σ ∈ Σ, we introduce

q[1](y1, . . . , yn)
<σ>−−−→ A(rhsq,σ),

xsp-(2). for all q ∈ Q, σ ∈ Σ and i ∈ N+, we introduce:

q[1](y1, . . . , yn)
</σ>−−−→ A(rhsq,ε),

q[i](y1, . . . , yn)
$−−−→ A(rhsq,ε),

xsp-(3). for all q ∈ Q, σ ∈ Σ and i > 1, we introduce:

q[i](y1, . . . , yn)
<σ>−−−→ q[i+ 1](y1, . . . , yn),

q[i](y1, . . . , yn)
</σ>−−−→ q[i− 1](y1, . . . , yn).

The translation A is defined by:

A(q(xi, rhs1, . . . , rhsn)) = q[i](A(rhs1), . . . ,A(rhsn′)),

A(ε) = ε, A(δ〈rhs〉) = <δ>A(rhs)</δ>,

A(yj) = yj , A(rhs rhs ′) = A(rhs) A(rhs ′),

where q ∈ Q, n = rank(q), δ ∈ Δ, i ∈ {1, 2} and j ∈ {1, . . . , n}.
Note that among the three cases of rule introduction, xsp-(1) covers the sit-
uation when the state and the input symbols are (q[1], <σ>); xsp-(2) cov-
ers (q[1], </σ>) and (q[i], $) for i ∈ N+; and xsp-(3) covers (q[i], <σ>) and
(q[i], </σ>) for i > 1. Therefore, the derived xsp SP(M) is total if M is. For
the examples below, we define a predicate testing whether the state and the
input symbols is in the xsp-(2) case: εΣ(i, χ) = (i = 1 ∧ χ = </σ>) ∨ χ = $,
with σ ∈ Σ. The following theorem, stating the correctness of the derivation, is
proved in the full version of this paper [22].

Theorem 1. Let M = (Q, Σ, Δ, in, R) be an mft. Then τSP(M)(�f	) = �τM (f)	
for every f ∈ FΣ .

Example 3. Apply the derivation to Example 1, we get SP(Mrev ) = (Q′, Σ, Σ,
Main [1], R′), where Q′ = {q[i] | q ∈ {Main ,Rev}, i ∈ N+} and the set R′ is:

{Main[1]()
<r>−−−−→ <r> Rev[1](ε) </r> Main[2](),

Main[1]()
<σ>−−−−→ <σ> Main[1]() </σ> Main[2]()

(σ �= r),

Main[i]()
<σ>−−−−→ Main[i + 1]() (σ ∈ Σ, i > 1),

Main[i]()
</σ>−−−−→ Main[i − 1]() (σ ∈ Σ, i > 1),

Main[i]()
χ−−−−→ ε (if εΣ(i, χ)),

Rev[1](y1)
<σ>−−−−→ Rev[2](<σ> Rev[1](ε) </σ> y1)

(σ ∈ Σ),

Rev[i](y1)
<σ>−−−−→ Rev[i + 1](y1) (σ ∈ Σ, i > 1),

Rev[i](y1)
</σ>−−−−→ Rev[i − 1](y1) (σ ∈ Σ, i > 1),

Rev[i](y1)
χ−−−−→ y1 (if εΣ(i, χ)) }.
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Figure 2(a) shows a sample run when the input is <a><r><b><c></c><d></d><e>
</e></r><f></f></a>$.

Example 4. The xsp derived from Example 2 is SP(Mhtm)=(Q′, Σ, Δ,Main [1],
R′), where Q′ = {q[i] | q ∈ Q, i ∈ N+} and R′ is shown in Figure 2(b).

4 Pushdown XML Stream Processor

The semantics given in Section 3 implies a direct implementation of xsp perform-
ing term rewriting each time an event is read. However, an xsp derived from an
mft follows a more regular evaluation pattern which resembles a stack. In this
section, we present an efficient implementation of the xsp’s derived from mft’s.

4.1 Summary of Behavior

Let us look at an example first. Consider the sample run of the xsp SP(Mrev)
in Figure 2, when event <c> is read. We abbreviate Rev to r and Main to m.
The prefix <a><r> has been ‘squeezed’ to the output. We need only to keep a
suffix of the temporary expression in memory:

ebefore = r[2](<b>r[1](ε)</b>)</r>m[3]()</a>m[4]().

After <c> is read, the expression gets updated to

eafter = r[3](<b>r[2](<c>r[1](ε)</c>)</b>)</r>m[4]()</a>m[5]().

We shall present a data structure such that the update can be efficient.
We represent a temporary expression by a pair of a main output stream and

a pushdown, as shown in Figure 3. The left and right parts in the figure corre-
spond to temporary expressions ebefore and eafter , respectively. Consider ebefore .
Separating the evaluated and unevaluated segments, it can be partitioned into
five parts: r[2](. . . ), </r>, m[3](), </a> and m[4](). If we abstract away the un-
evaluated parts and replace them with holes [ ]νi using a physical address νi, we
obtain the main output stream [ ]ν1</r>[ ]ν2</a>[ ]ν3 .

The pushdown is a stack of sets, each set consisting of state frames . A state
frame is a pair of a state q(. . . ) and a hole address ν, denoted by q(. . . )/ν.
The state may have a number of arguments, represented by a sequence in a
way similar to the main output stream. In the pushdown representation, every
state q[i] appears in the i-th set from the top. Therefore the index i need not be
stored in the representation. Since all states in ebefore have distinct indexes, the
pushdown contains only singleton sets, which need not be true in general.

Only the states with index 1 gets expanded. In our representation, that means
we only need to update the top of the pushdown. Upon reading <c>, the rule
of r[1] that gets triggered is r[1](ε) <c>−−−→ r[2](<σ> r[1](ε) </σ> ε). That corre-
sponds to popping the set {r(ε)/ν4} (representing r[1](ε) in ebefore), and pushing
two sets {r(ε)/ν5} (representing r[1](ε) in eafter ) and {r(<c> [ ]ν5 </c>)/ν6}
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Main[1]()
<a>−−−−−→ <a>Main [1]()</a>Main[2]()

<r>−−−−−→ <a><r>Rev[1](ε)</r>Main[2]()</a>Main[3]()

<b>−−−−−→ <a><r>Rev[2](<b>Rev[1](ε)</b>)</r>Main[3]()</a>Main[4]()

<c>−−−−−→ <a><r>Rev[3](<b>Rev[2](<c>Rev[1](ε)</c>)</b>)</r>Main[4]()</a>Main[5]()

</c>−−−−−→ <a><r>Rev[2](<b>Rev[1](<c></c>)</b>)</r>Main[3]()</a>Main[4]()

<d>−−−−−→ <a><r>Rev[3](<b>Rev[2](<d>Rev[1](ε)</d><c></c>)</b>)</r>Main[4]()</a>Main[5]()

</d>−−−−−→ <a><r>Rev[2](<b>Rev[1](<d></d><c></c>)</b>)</r>Main[3]()</a>Main[4]()

</b>−−−−−→ <a><r>Rev[1](<b><d></d><c></c></b>)</r>Main[2]()</a>Main[3]()

<e>−−−−−→ <a><r>Rev[2](<e>Rev[1](ε)</e><b><d></d><c></c></b>)</r>Main[3]()</a>Main[4]()

</e>−−−−−→ <a><r>Rev[1](<e></e><b><d></d><c></c></b>)</r>Main[2]()</a>Main[3]()

</r>−−−−−→ <a><r><e></e><b><d></d><c></c></b></r>Main[1]()</a>Main[2]()

<f>−−−−−→ <a><r><e></e><b><d></d><c></c></b></r><f>Main[1]()</f>Main[2]()</a>Main[3]()

</f>−−−−−→ <a><r><e></e><b><d></d><c></c></b></r><f></f>Main[1]()</a>Main[2]()

</a>−−−−−→ <a><r><e></e><b><d></d><c></c></b></r><f></f></a>Main[1]()

$−−−−−→ <a><r><e></e><b><d></d><c></c></b></r><f></f></a>

(a)

R′ = { Main[1]()
<article>−−−−→ <html> <head> Title[1]() </head> <body> InArticle[1](ε)

</body> </html>,

Title[1]()
<title>−−−−→ <title> Copy[1]() </title>,

InArticle [1](y1)
<title>−−−−→ <h1> Copy[1]() </h1> InArticle [2](y1),

InArticle [1](y1)
<para>−−−−→ <p> Key2Em[1]() </p> InArticle [2](y1 AllKeys [1]()),

InArticle [1](y1)
<ps>−−−−→ <h2>Index</h2><ul>y1</ul><h2>Postscript</h2>Copy[1](),

Key2Em[1]()
<key>−−−−→ <em> Copy [1]() </em> Key2Em[2](),

Key2Em[1]()
<σ>−−−−→ <σ> Key2Em[1]() </σ> Key2Em[2]() (σ �= key),

AllKeys [1]()
<key>−−−−→ <li> Copy[1]() </li> AllKeys [2](),

AllKeys [1]()
<σ>−−−−→ AllKeys [1]()AllKeys[2]() (σ �= key),

Copy[1]()
<σ>−−−−→ <σ> Copy[1]() </σ> Copy[2]() (σ ∈ Σ),

q[i]()
<σ>−−−−→ q[i + 1]() (σ ∈ Σ, i > 1, q �= InArticle),

q[i]()
</σ>−−−−→ q[i − 1]() (σ ∈ Σ, i > 1, q �= InArticle),

q[i]()
χ−−−−→ ε (if εΣ(i, χ)),

InArticle [i](y1)
<σ>−−−−→ InArticle[i + 1](y1) (σ ∈ Σ, i > 1),

InArticle [i](y1)
</σ>−−−−→ InArticle[i − 1](y1) (σ ∈ Σ, i > 1),

InArticle [i](y1)
χ−−−−→ ε ((χ, i) ∈ Σε) }.

(b)

Fig. 2. Stream processing induced by SP(Mrev ) and SP(Mhtm)
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�<c>

temporary
expression :

main
output stream :

pushdown :

ebefore

[ ]ν1 </r> [ ]ν2 </a> [ ]ν3

eafter

[ ]ν1 </r> [ ]ν2 </a> [ ]ν3

{ m()/ν3 }
{ m()/ν2 }

{ r(<b> [ ]ν4 </b>)/ν1 }
{ r(ε)/ν4 }

{ m()/ν3 }
{ m()/ν2 }

{ r(<b> [ ]ν6 </b>)/ν1 }
{ r(<c> [ ]ν5 </c>)/ν6 }

{ r(ε)/ν5 }

Fig. 3. Pushdown representation for temporary expressions and its updating

(representing r[2](<σ> . . . </σ>) in eafter ). Now that ν4 is expanded, all occur-
rences of [ ]ν4 in the pushdown should be filled with [ ]ν6 . Since two items are
pushed, all other sets in the pushdown descend for one level. This corresponds
to updating all states q[i] (i > 1) to q[i + 1] at the same time.

4.2 Pushdown Representation and Its Updating

Let M = (Q, Σ, Δ, in, R) be an mft. An output stream s for M is defined by

m ::= ε | <δ> m | </δ> m | [ ]ν m,

where δ ∈ Δ, and [ ]ν is a hole whose physical address is ν. We denote the set
of output streams by SM . A state frame has the form q(m1, . . . , mn)/ν where ν
is a hole address, q ∈ Q, n = rank(q), and mi ∈ SM (i = 1, . . . , n).

A pushdown is a mapping from a positive number, representing the depth, to
a set of state frames. Furthermore, each hole address ν occurs on the right-hand
side of / in a pushdown at most once. The empty pushdown is denoted by ø.
Given a set of state frames Ψ , we denote by {1 �→ Ψ, . . . } a pushdown p such
that p(1) = Ψ . Two pushdowns p1 and p2 can be merged by p1 ⊕ p2 = {d �→
p1(d) � p2(d)}d∈N+

2.

Definition 9. Let M = (Q, Σ, Δ, in, R) be an mft. A pushdown representation
pd(e) for e ∈ TmpSP(M) is a pair 〈m, p〉 of a main output stream m and a
pushdown p defined by

pd(ε) = 〈ε, ø〉, pd(<δ> e) = 〈<δ> m, p〉, pd(</δ> e) = 〈</δ> m, p〉,
pd(q[i](e1, . . . , en) e) = 〈[ ]ν m, {i �→ {q(m1, . . . ,mn)/ν}} ⊕ p1 ⊕ · · · ⊕ pn ⊕ p〉,

where 〈m, p〉 = pd(e), 〈mi, pi〉 = pd(ei) and ν is a fresh address. Denote the set
of pushdown representations for temporary expressions in TmpSP(M) by PdrM .

From a pushdown representation, we can recover the temporary expression by
filling every hole according to the corresponding state frame in the pushdown.

2 For any d ∈ N
+, p1(d) and p2(d) are disjoint because hole addresses are unique.



350 K. Nakano and S.-C. Mu

We define several operations to manipulate the pushdown representation. An
application for a hole [ ]ν in an output stream m with another output stream u
is denoted by m@νu, i.e., when m = m1[ ]νm2, we have m@νu = m1um2. The
hole application can be extended to a set of state frames and a pushdown in the
same way, denoted by Ψ@νu and p@νu. Let p be a pushdown and Ψ a set of
state frames. The pushdown obtained by pushing Ψ on the top of p is denoted
by p � Ψ = {1 �→ Ψ} ∪ {d �→ p(d− 1)}d>1. The dual operation popping the top
of p is denoted by �p = {d �→ p(d + 1)}d∈N+.

The hole application operation can be efficiently implemented in the sense that
the execution time is independent of the size of main output streams and push-
downs. Experimental implementation introduced in Section 5 uses doubly-linked
cyclic lists to represent output streams, so we can implement hole application,
concatenation and squeeze efficiently.

4.3 Pushdown Machines for Macro Forest Transducers

For a given mft M , we introduce a pushdown machine in stream processing style
which simulates the behavior of the xsp SP(M). Since the semantics of an xsp
is specified by a transition 〈| , |〉 on temporary expressions, we construct the
pushdown machine as a transition on pushdown representations. In the following
definition, the function pd◦ extends pd by one extra case, pd◦(yi) = yi for i ∈ N+.
Therefore pd◦ can be applied to the right-hand side of rules in an xsp.

Definition 10. Let M = (Q, Σ, Δ, in, R) be an mft. The pushdown machine
for M , denoted by PD(M), is a function 〈| , |〉 : PdrM ×Σ<>$ → PdrM . For
a pushdown representation 〈m, p〉 ∈ PdrM and input event χ ∈ Σ<>$, a new
pushdown representation 〈|〈m, p〉, χ|〉 is given as follows:

– 〈|〈m, p〉, <σ>|〉 = Φσ(m, (�p) � ∅ � ∅, p(1)), where function Φσ is defined by

Φσ(m, p, ∅) = 〈m, p〉
Φσ(m, p, {q(m1, . . . ,mn)/ν} , Ψ) = Φσ(m@νm

′, p@νm
′ ⊕ p′, Ψ@νm

′)

with 〈m′, p′〉 = pd◦(A(rhsq,σ))[yj := mj ]j=1,...,n.
– 〈|〈m, p〉, </σ>|〉 = Φε(m, �p, p(1)), where the function Φε is defined by

Φε(m, p, ∅) = 〈m, p〉
Φε(m, p, {q(m1, . . . ,mn)/ν} , Ψ) = Φε(m@νm

′, p@νm
′ ⊕ p′, Ψ@νm

′)

with 〈m′, p′〉 = pd◦(A(rhsq,ε))[yj := mj ]j=1,...,n.
– 〈|〈m, p〉, $|〉 = Φε(m, ø,

⋃
d∈N+ p(d)), where Φε is as in the case χ = </σ>.

For an mft M = (Q, Σ, Δ, in, R), the initial pushdown representation of PD(M)
is 〈[ ]ν0 , {1 �→ {in(ε, . . . , ε)/ν0}}〉 with address ν0. It corresponds to the initial
state of an xsp SP(M), that is, in [1](ε, . . . , ε). For a pushdown machine P =
PD(M) , the transformation τP : Σ◦

<> → Δ◦
<> induced by P a defined in a

way similar to τSP(M), that is, τP (s) = ζP (〈[ ]ν0 , {1 �→ {in(ε, . . . , ε)/ν0}}〉, s$),
where ζP (〈m, p〉, ε) = m and ζP (〈m, p〉, χs) = ζP (〈|〈m, p〉, χ|〉, s) for a pushdown
representation 〈m, p〉.
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For an mft M , the behaviour of PD(M) on pushdown representations mirrors
that of SP(M) on temporary expressions. Consider the case when a start tag
<σ> is read. In the xsp SP(M), every state q[i] (i > 1) is rewritten into q[i + 1].
In the pushdown machine PD(M), the corresponding state frame q(. . . )/ν in
the i-th set of the pushdown descends by one level because we perform one
pop and two pushes on the pushdown. In SP(M), every state q[1] is rewritten
by A(rhsq,σ). In the pushdown machine PD(M), for each corresponding state
frame q(. . . )/ν in the top set of the pushdown, the hole [ ]ν is filled according
to A(rhsq,σ). Since a computation of pd◦(A(rhsq,σ)) is invoked, the state q[1]
in A(rhsq,σ) is put as an element of the top set of the pushdown and q[2] in
A(rhsq,σ) is put as an element of the second set from the top.

Consider the case when an end tag </σ> is read. In the xsp SP(M), every
state q[i] (i > 1) is rewritten to q[i− 1]. The corresponding state frame q(. . . )/ν
in the i-th set of the pushdown ascends by one level after popping. In the xsp
SP(M), every state q[1] is replaced according to A(rhsq,ε). In the pushdown
machine PD(M), for the corresponding state frame q(. . . )/ν in the top set of
the pushdown, the hole [ ]ν is filled according to A(rhsq,ε).

After reading $, the pushdown must be empty since A(rhsq,ε) contains no
pattern q[i](. . . ) and all state frames in the previous pushdown is consumed by
Φε(s, ø,

⋃
d∈N+ p(d)). Therefore the final output stream has no holes.

Since every transition on pushdown representations corresponds to a transi-
tion on temporary expressions, we can see that τPD(M)(s) = τSP(M)(s) for every
mft M and every input stream s. From Theorem 1, we have τPD(M)(�f	) =
�τM (f)	 for every input forest f for M , which shows the equivalence of the
original mft and the derived pushdown machine.

The above definition of τP for a pushdown machine P can be made more
efficient by squeezing, that is, printing out the prefix, up to the first hole, of the
main output stream. We define the following function sqz for output streams:

sqz (ε) = (ε, ε), sqz ([ ]ν m) = (ε, [ ]ν m),

sqz (<δ> m) = (<δ> m′,m′′), sqz (</δ> m) = (</δ> m′,m′′),

where (m′, m′′) = sqz (m). We can then redefine ζP with sqz as follows:

ζP (〈m,p〉, ε) = m,

ζP (〈m,p〉, χs) = m′ ζP (〈|〈m′′, p〉, χ|〉, s) where (m′,m′′) = sqz (〈|〈m, p〉, χ|〉).

Some variables do not occur in the right-hand side. For example, consider a
rule q(pat , y1) → ε and the corresponding xsp rule q[1](y1)

χ−−−→ ε. When the
top set of the pushdown contains q(m1)/ν, the occurrence of [ ]ν will be filled
with ε. To avoid ineffective updating, all hole addresses contained in m1 should
be discarded if the hole does not occur in other positions. Some variables may
occur more than once. For example, consider the rule q(pat , y1) → y1 y1. and

the corresponding xsp rule q[1](y1)
χ−−−→ y1 y1. If we use doubly-linked cyclic

lists to represent main output streams, a hole [ ]ν may occur twice. When the
hole [ ]ν is required to be filled, we cannot replace both occurrence of ν with the
same doubly-linked list. Therefore, we mark the state frame to remember that
it appears twice.
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Table 1. Benchmarking results

input size 1MB 4MB 16MB 64MB 256MB

pushdown xsp 0.49sec / 1.10MB 1.19sec / 1.10MB 3.85sec / 1.10MB 15.2sec / 1.10MB 84.6sec / 1.10MB
direct impl. mft 0.52sec / 4.87MB 1.39sec / 16.7MB 4.92sec / 62.1MB 20.2sec / 250MB 588sec / 415MB
xsltproc 0.79sec / 8.73MB 3.51sec / 33.2MB 19.4sec / 129MB 162sec / 462MB n/a
saxon 3.12sec / 24.5MB 5.40sec / 36.5MB 13.1sec / 94.4MB 43.7sec / 289MB n/a

(execution time / max. memory usage)

(a) For transformation Mrev

input size 4MB 64MB

pushdown xsp 1.26sec / 3.93MB 17.1sec / 49.8MB
direct impl. mft 1.25sec / 15.9MB 17.7sec / 233MB

(execution time / max. memory usage)

(b) For transformation Mhtm

input size 4MB 64MB

pushdown xsp 1.60sec / 11.6MB 24.8sec / 170MB
direct impl. mft 1.40sec / 16.6MB 20.4sec / 249MB

(execution time / max. memory usage)

(c) For transformation Mfrev

5 Benchmarking Results

We use the random sample generator XMark [33] to produce sample XML doc-
uments of sizes 1MB, 4MB, 16MB, 64MB and 256MB. A document contains a
sequence of item nodes, each having a list of children about a dozen lines long.

The first task is to reverse the order of subtrees under item. The pushdown
machine automatically derived from the mft Mrev , shown as the entry push-
down xsp in Table 1, is implemented in Objective Caml, with extensions to
handle text nodes. The entry direct impl. mft is the program in Figure 1 im-
plemented as mutual recursive functions in Objective Caml. The entry xsltproc
is one of the fastest XSLT processors bundled with libxslt [31] 1.1.11, writ-
ten in C, while saxon [13] 8.7.3 is one of the fastest XSLT processors in Java.
All entries apart from pushdown xsp build the entire forest in memory before
the transformation. The experiments were conducted on a 1.33 GHz PowerBook
G4 with 768 MB of memory. Table 1(a) compares the total execution time and
maximum memory size in seconds and megabytes.

As we expected, pushdown xsp uses the smallest heap. That it also out-
performs the two XSLT processors may be due to the overhead of the latter
maintaining full-fledged XML data, including e.g., namespace URI, number of
children. For a fairer comparison, we added the entry direct impl. mft. The
entry pushdown xsp is slightly faster than direct impl. mft because it incurs
less garbage collection, and saves the overhead of building the trees. We expect
that xsp will also deliver competitive speed even after scaling to full XML.

For other transformations, we compared only pushdown xsp and direct
impl. mft for random inputs of 4MB and 64MB. Table 1(b) shows the results
for transformation Mhtm in Example 2. This result also indicates a small heap
residency of pushdown xsp with elapsed time similar to direct impl. mft.
Table 1(c) shows results for full reversal Mfrev , which will be discussed later.

6 Discussion

Comparison with Lazy Evaluation. Many of our readers wondered: “Can we
not just use lazy evaluation?” Consider the programunparse (trans (parse input))
in a non-strict language, where the function parse builds the tree lazily upon the
demand of the forest-to-forest transformation trans. When the program is run
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by a lazy evaluator, do we get the desired space behaviour? We run a number of
experiments in Haskell. The parser in Section 3.2 shares the input stream s and
causes a space leak. Instead we use a definition of parse that returns a pair of
the tree and the unprocessed tail of the stream, such that the input stream can
be freed after being used. However, its space behaviour is compiler-dependent,
due to a space leak of when returning pairs, addressed by Wadler [29]. The fix
he proposed is actually implemented in both NHC98 [23] and GHC [7], but is
fragile in presence of other valuable optimisations of GHC [12].

Example 2 shows a problem more intrinsic to the nature of lazy evaluation.
The list of keywords appears very late and remain unevaluated until it is finally
output. This is in fact what we expect of lazy evaluation. However, the thunk
contains a reference to the beginning of the input stream, which means that the
entire input stream will reside in memory. Put it in a wider context, we recall
Wadler’s claim [29] that we need a parallel evaluator to avoid certain classes of
space leaks. Our xsp implementation, which evaluates all the states q[1] indexed
1, can actually be seen as a parallel evaluator specialised for XML processing.

Streaming for Existing XML Transformation Languages. It has been
shown how to convert XPath expressions into attributed tree transducers [21],
which is weaker than mfts. Can we convert functions defined in languages such
as XSLT [34], fxt [3], XDuce [11], or CDuce [2], into mft’s?

TL [17] is like mft, but supports pattern matching by monadic second-order
logic (MSO) formulae. Each TL rule has the form q(φ, y1, . . . , yn) → rhs , where
φ is an MSO formula. When q is called, the nodes satisfying φ is passed as
it argument. Maneth et al. showed that most practical TL programs use only
MSO formulae that does not select ancestor nodes, and such programs can be
represented by a deterministic mft. It implies that XSLT programs using only
forward XPath expressions can be expressed as mft’s.

XDuce and CDuce support regular expression pattern [10]. The following tail-
capturing XDuce program can be captured by an mft:

fun mkTelList (val e as (Name,Addr,Tel?)*) =
match e with name[val n], addr[val a], tel[val t], val rest

-> name[n], tel[t], mkTelList (rest)
| name[val n], addr[val a], val rest -> mkTelList (rest)
| () -> ()

MkTelList(name〈x1〉x2) Name(addr〈x1〉x2, y1) → NameAddr(x2, y1)

→ Name(x2, name〈Val(x1)〉) NameAddr(tel〈x1〉x2, y1) → y1 tel〈Val(x1)〉 MkTelList(x2 )

MkTelList(ε) → ε NameAddr(name〈x1〉x2, y1) → Name(x2, name〈Val(x1)〉)
NameAddr(ε, y1) → y1

Here we extend mft’s to handle text data, and Val is the identity function for
text. This mft is total if inputs are restricted to the type (Name,Addr,Tel?)*
specified by the original XDuce program. Hosoya and Pierce [10] talked about
how to convert non-tail-capturing patterns into tail-capturing equivalents. It will
be among our future work to see how this approach works in general.

The mft can be extended to handle other datatypes. For example, we can
extend the right-hand side with booleans, boolean operators, and conditional
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branches: rhs ::= . . . | true | false | if (rhs , rhs , rhs), and correspondingly extend
the xsp with some extra rules [21]: if (true, e1, e2) → e1 and if (false , e1, e2) → e2.
Some extra care is needed to ensure that if is always in the top set of a pushdown.
With booleans and conditionals we can express transformations including the
invite/visit iteration with XPath expressions in XTiSP [19].

Limitation. The goal of xsp is to ensure that the input stream does not re-
side in memory. On the other hand, the space occupied by temporary result of
the computation is a separate issue related to the nature of the computation
performed. Certain transformations are inherently memory inefficient [25]. For
example, if we replace the two rules of Mrev for r〈x1〉x2 and σ〈x1〉x2 with a single
rule: Main(σ〈x1〉x2) → Rev(x2, σ〈Rev (x1, ε)〉), the mft (call it Mfrev ) reverses
the subtrees for all nodes. The derived xsp still efficiently consumes the input
stream, but the temporary expression grows linearly. Every SAX-like stream
processing program has the same problem. As a trial experiment, Table 1(c)
compares Mfrev and a program direct impl. mft which simply loads the tree
and performs the full reverse. The result shows that our implementation does
not carry too much overhead even for this inherently inefficient transformation.

Memory used by the xsp’s in this paper are all minimum for the desired
computation, which is not true in general and remains a future work to analyse.

7 Conclusion and Related Work

We have presented a method to automatically derive an XML stream proces-
sor from a program expressed as a macro forest transducer. The XML stream
processor has an efficient implementation based on a pushdown machine. The
framework presented in this paper will be the core of the next release of XTiSP
[19]. We believe that the mft is expressive enough that we can transform most
practical programs written in existing XML processing languages [11,2,34] to
mft, in order to streamlise them.

Most of the work devoted to automatic derivation of XML stream processors
from declarative programs focus on query languages, such as XPath [1,5,8,9]
and a subset of XQuery [16]. They are not expressive enough to describe some
useful transformation such as the structure-preserving transformation renaming
all the labels a to b. The key idea of our framework was presented in the first
author’s previous work [21,25], based on the composition of (stack-)attributed
tree transducers (att) [20]. All programs definable in the XML transformation
language XTiSP [21,19] can be translated into att’s, which are less expressive
than mft’s [6,26]. Our result in this paper is therefore stronger. The formalisation
here helps to produce the next version of XTiSP that is both correct and efficient.

Kodama, Suenaga, Kobayashi and Yonezawa [15] studied ordered-linear typed
programs and how to buffer the input and process the buffered tree. In a subse-
quent paper [28], they tried to derive stream processors by automatically detect-
ing which input should be buffered. The restrictions imposed by ordered linear
type may not always be preferred for stream processing. In Example 2, where
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one argument is shared by two functional calls, our stream processor still con-
sumes the input as its tokens are read. An ordered linear typeable alternative
would keep a copy of the input in memory until it is pattern-matched.

Kiselyov [14] proposed defining XML transformation using a function foldts
over rose trees. and actions fup, fdown and fhere. This programming style is not
flexible enough and many function closures are created. STX [4] is a template-
based XML transformation language that operates on stream of SAX [32] events.
While the programmers can define XML transformation as well as XSLT [34],
they have to explicitly manipulate the environment. TransformX by Scherzinger
and Kemper [27] provides a framework for syntax-directed transformations of
XML streams, using attribute grammar on the type schema for inputs. However,
we must still keep in mind which information should be buffered before and after
reading each subtree in the input.
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Abstract. String expression analysis conservatively approximates the
possible string values generated by a program. We consider the validation
of a context-free grammar obtained by the analysis against XML schemas
and develop two algorithms for deciding inclusion L(G1) ⊆ L(G2) where
G1 is a context-free grammar andG2 is either an XML-grammar or a regu-
lar hedge grammar. The algorithms for XML-grammars and regular hedge
grammars have exponential and doubly exponential time complexity, re-
spectively. We have incorporated the algorithms into the PHP string an-
alyzer and validated several publicly available PHP programs against the
XHTML DTD. The experiments show that both of the algorithms are ef-
ficient in practice although they have exponential complexity.

1 Introduction

String expression analysis conservatively approximates the possible string values
generated by a program [CMS03b]. Minamide adopted context-free grammars
as a foundation of string expression analysis and developed a string analyzer for
PHP [Min05]. We consider the validation of a context-free grammar obtained
by the analysis against XML schemas and develop two algorithms for deciding
inclusion L(G1) ⊆ L(G2) where G1 is a context-free grammar and G2 is either
an XML-grammar or a regular hedge grammar, which are subclasses of context-
free grammars theoretically corresponding to XML schema languages such as
Document Type Definition (DTD) and RELAX NG [CM01].

To simplify the discussion on XML validation, we consider languages over a
paired alphabet. Context-free languages with parentheses or paired alphabets
were studied extensively in the 1960s and 1970s [McN67, Knu67, Tak75]. Let A
be a base alphabet. Then, we introduce a paired alphabet consisting of two sets
Á and À:

Á = { á | a ∈ A } À = { à | a ∈ A }

where Á and À correspond to the set of start tags and the set of end tags,
respectively. We consider that á and à match. We write Σ for Á ∪ À. This
notation is based on Takahashi’s work on context-free grammars [Tak75].

The fundamental notion on a string over a paired alphabet is whether it is
balanced. For example, áb́b̀ćc̀à and áàb́b̀ are balanced, but áb̀ and áb́b̀ are not.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 357–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This notion of balanced strings corresponds to well-formed documents in XML.
We call the set of all balanced strings B(Σ) the Dyck set over Σ.

As a balanced subclass of context-free languages, Berstel and Boasson proposed
XML-grammars modeling DTDs and studied their formal properties [BB02]. An
XML-grammar consists of a set of terminals Σ = Á∪ À, a set of nonterminals V
in one-to-one correspondence with base alphabet A, a start nonterminal S, and
a set of productions. For each a ∈ A, there must be a unique production of the
following form:

Xa → áRaà

where Xa is the nonterminal corresponding to a and Ra is a regular expression
over V .

Example 1. Consider the following DTD, taken from [BB02].

<!DOCTYPE a [
<!ELEMENT a ((a|b),(a|b)) >
<!ELEMENT b (b)* >

]>

This DTD can be represented by an XML-grammar with the following produc-
tions:

Xa → á(Xa|Xb)(Xa|Xb)à
Xb → b́X∗

b b̀

where Xa and Xb are the nonterminals corresponding to a and b, respectively,
and Xa is the start symbol.

In this formal setting, validating a context-free grammar against a DTD cor-
responds to checking L(G) ⊆ L(Gxml) for a context-free grammar G and an
XML-grammar Gxml. To develop an algorithm checking this inclusion, we ex-
ploit locality in DTDs and XML-grammars. They have locality in the sense that
they can only describe a relation between an element and its children as can
seen in the definition of XML-grammars. The algorithm has exponential time
complexity and is presented in Section 4.

There is a larger class of grammars called regular hedge grammars corre-
sponding to regular tree languages over unranked alphabets [Mur99]. The class
of regular hedge grammars can be formulated as an extension of XML-grammars
where each production has the following form:

X → R

where R is an arbitrary regular expression over áY à. Also there is an alterna-
tive formulation of regular hedge grammars. We obtain grammars of the same
expressiveness by restricting each production to one of the following forms:

X → áY àZ or X → ε.
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Example 2. The following is a regular hedge grammar where I is the start sym-
bol.

I → X X → (áY à)∗(áXà)(áY à)∗ X → (áY à)∗(b́Y b̀)(áY à)∗ Y → (áY à)∗

The same language is obtained by the following productions.

I → X X → áXàY X → áY àX X → b́Y b̀Y
Y → áY àY Y → ε

The grammar generates the set of balanced strings over { á, à, b́, b̀ } containing
one pair of b́ and b̀.

There is a regular hedge grammar that cannot be represented as an XML-
grammar. The example above is indeed such a regular hedge grammar. Inversely,
an XML-grammar can always be considered as a regular hedge grammar. We
describe an XML validation algorithm of a context-free grammar against a regu-
lar hedge grammar in Section 3. This makes it possible to validate a context-free
grammar against XML schemas such as RELAX NG which is more expressive
than DTD. This validation algorithm has doubly exponential time complexity.

We introduce two new algorithms for deciding inclusion L(G1) ⊆ L(G2)
for G1 a context-free grammar and G2 either an XML-grammar or a regular
hedge grammar. However, they do not extend known results on subclasses of
context-free grammars for G2, for which the above inclusion problem is decid-
able. Greibach and Friedman considered the inclusion problem for a subclass of
deterministic pushdown automata called superdeterministic PDA [GF80]. They
showed that it is decidable whether L(M1) ⊆ L(M2) for M1 an arbitrary non-
deterministic PDA and M2 a superdeterministic PDA. The complexity of their
algorithm is doubly exponential in the size of the machines. It was also shown
that generalized parenthesis languages studied by Takahashi [Tak75] are superde-
terministic: a generalized parenthesis grammar is translated into a superdeter-
ministic PDA, which is exponential in its size. Since regular hedge grammars
are a subclass of generalized parenthesis grammars, their result is more gen-
eral than ours and we can apply their algorithm to validation of a context-free
grammar against a regular hedge grammar. However, if we naively estimate the
complexity of the validation through a superdeterministic PDA, the complexity
is triply exponential. This is one order of exponential worse than our validation
algorithm.

Hereafter in this paper, we assume that a context-free grammar (CFG) is
reduced. This means that every nonterminal is accessible from the start symbol
and every nonterminal produces at least one terminal string.

This paper is organized as follows. In Section 2, we describe the algorithm
of Berstel and Boasson, which decides whether or not every word of a context-
free grammar is balanced. This is the basis of both of our algorithms. In Sec-
tions 3 and 4, we introduce our validation algorithms for regular hedge grammars
and XML-grammars, respectively. In Section 5, we describe the implementa-
tion of the algorithms as backend validators of the PHP string analyzer and
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show our experimental results. Finally, we review related work and present some
conclusions.

2 Checking Balancedness

One of the most fundamental notions of strings over a paired-alphabet is their
balancedness. Knuth [Knu67] developed an algorithm to decide whether the
language of a context-free grammar is balanced for a language with a single
pair of parentheses. Berstel and Boasson [BB02] extended this for a language
over a paired alphabet.

Proposition 1. Given a context-free grammar G over a paired alphabet, it is
decidable whether or not its language is balanced.

This balancedness check is the basis of validation algorithms because a grammar
G is valid against some XML or regular hedge grammar only if G is balanced.
However, the original algorithm by Berstel and Boasson for this balancedness
check was not efficient as it could be, so that we here give an improved version
of their algorithm.

Berstel and Boasson started from the following observation. We say a string φ
is partially balanced if it is a factor, i.e., substring, of some balanced string. If φ
is partially balanced, we have a = b whenever áψb̀ occurs in φ with ψ balanced.
As a result, each such φ is always uniquely factorized into the following form
with all φi balanced.

φ = φ1à1φ2à2φ3 · · · ànφn+1án+1 · · ·φmámφm+1

Let us define a partial function ρ : Σ∗ ⇀ À∗Á∗ by

ρ(φ) =

{
à1à2 · · · ànán+1 · · · ám φ is partially balanced
undefined otherwise

Observe that (1) φ is balanced iff ρ(φ) = ε, and (2) ρ(φψ) = ρ(ρ(φ)ρ(ψ)) if φ
and ψ are partially balanced. This means that to determine whether all strings
generated from a context-free grammar G are balanced, it is sufficient to check
G under interpretation by ρ.

Example 3. Consider the following grammar.

I → ááXàà X → ààáá X → áXà

The language of this grammar is balanced. A set of strings generated from X is
{ákààááàk | k ≥ 0} whose interpretation by ρ is a finite set {ààáá, àá, ε}. We
can easily see that for each string φ in this set ρ(ááφàà) = ε.

The idea of the balancedness check is to compute the finite set Irr(X)(⊆
À∗Á∗) = {ρ(φ) | X

∗−→ φ} for each nonterminal X . As in the above example,
given a balanced grammar this set is always finite. Furthermore, each length of
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φ ∈ Irr(X) is at most exponential to the size of the balanced grammar. These
facts suggest that we can stop the computation of Irr(X) whenever some string
φ ∈ Irr(X) is found to be longer than a given fixed length. This is the idea of
Berstel and Boasson.

Let us look at this idea more precisely. In general, for each nonterminal X ,
we have a derivation in the form I

∗−→ ψXζ such that both ψ and ζ are at
most of exponential length to the size of grammar 1. Now, the balancedness
implies that ρ(ψφζ) = ε for any φ such that X

∗−→ φ. We can observe that this
holds iff ρ(ψ), ρ(ζ) and ρ(φ) are in the following forms, ρ(ψ) = b́k · · · b́1án · · · á1,
ρ(ζ) = c̀1 · · · c̀mb̀1 · · · b̀k (an �= cm), and ρ(φ) = à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1

(j ≤ k). Hence we have |ρ(φ)| ≤ |ρ(ψ)|+ |ρ(ζ)|.
However, this bound is not always small, as shown in the following example.

I → XYn Y0 → à Y1 → Y0Y0 . . . Yn → Yn−1Yn−1

We can see that I
∗−→ X

2n︷ ︸︸ ︷
à · · · à. Therefore, for this grammar to be balanced

(e.g., define rules for X(= Xn) by X0 → á, X1 → X0X0, . . . , Xn → Xn−1Xn−1),
each φ such that X

∗−→ φ should be at most 2n in length. On the other hand,
the grammar is not balanced if we define the following rules:

X → ε X → Xá X → Xb́

where Irr(X) = {á, b́}∗. Unfortunately in checking this unbalancedness, the al-
gorithm by Berstel and Boasson tries to compute subsets of Irr(X) including
words at most of length 2n, i.e.,

⋃
k≤2n{á, b́}k whose size is doubly exponential

to the size of the grammar.
We can relax this double-exponential behavior to exponential by a small mod-

ification to the algorithm. Let � be the minimal ordering over À∗Á∗ satisfying

φ̀φ́′ � φ̀àáφ́′.

Our idea is simply to compute Irr(X) as far as every two elements are consistent
wrt this ordering, i.e., if φ, φ′ ∈ Irr(X) then either φ � φ′ or φ′ � φ. Again
assume I

∗−→ ψXζ and X
∗−→ φ, φ′. By the previous discussion, if ρ(ψφζ) =

ρ(ψφ′ζ) = ε, we have both ρ(φ) and ρ(φ′) in the form

à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1

with only j differing. Hence ρ(φ) and ρ(φ′) are always consistent wrt �. In other
words, we can stop the computation of Irr(X) whenever we found an inconsistent
element. We obtain the algorithm in Figure 1 by extending Berstel and Boasson’s
algorithm with this additional consistency check.
1 The depth of derivations to compute ψ and ζ is bounded by the number of nonter-

minals n of canonical two normal form [Har78] of G where only the productions of
the following forms are allowed: X → Y Z, X → Y , X → a, and X → ε. Then, the
sizes of ψ and ζ are at most 2n.
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Input CFG (V,Σ, P, I).
Output BALANCED or NOT BALANCED.
1 For each X ∈ V , let bound(X) = |ρ(ψ)|+ |ρ(ζ)| for some I

∗−→ ψXζ.
2 Set Irr[X] = {} for each X ∈ V
3 For each X → γ[X1, . . . ,Xn] ∈ P where γ[] is a context made from terminal symbols,

and X1, . . . ,Xn are nonterminals.
– For each tuple φ1, . . . , φn such that each φi ∈ Irr[Xi],
• Let φ = ρ(γ[φ1, . . . , φn]). If this φ is undefined, return NOT BALANCED.
• If |φ| > bound(X), return NOT BALANCED.
• If φ �% φ′ nor φ′ �% φ for some φ′ ∈ Irr[X], return NOT BALANCED.
• Otherwise, update Irr[X] := Irr[X] ∪ {φ}.

4 If some Irr[X] has been updated, go to 3.
5 If Irr[I ] = {ε} then return BALANCED, else return NOT BALANCED.

Fig. 1. The algorithm of balancedness check

To observe the complexity improvement, note that � is a linear ordering. So
if Irr(X) only has consistent elements wrt �, its size is bounded by the maximal
length of strings in Irr(X).

The algorithm presented here still requires exponential time, i.e., 2O(n)-time
where n is the size of the grammar. However, we conjecture that the balanced-
ness check itself is even a PTIME problem. For this, the first step is to simplify
the algorithm to check and remember only the maximal element of Irr(X) ac-
cording to �, rather than Irr(X) itself.2 The remaining steps involve the use of
a PTIME algorithm for the equivalence of straight line programs [Pla94]. We
do not explain these details in this paper due to space limitation. Because the
balancedness check is a subproblem of validation, and the complexity of our val-
idation algorithms is exponential or doubly exponential, an improvement here
will be canceled out in the analysis of total complexity.

3 Regular Hedge Grammar Validation

In this section, we give the first algorithm of XML validation for CFG. This
algorithm determines

L(G) ⊆ L(Greg)

where Greg is specified as a regular hedge grammar. This algorithm runs in double
exponential-time, i.e., time complexity bounded by 22p(n)

for some polynomial
p(n), to the size of inputs n.

3.1 Regular Hedge Grammar and Binoid

We first introduce a finite algebra called binoid. We believe that a binoid is a
useful algorithmic tool to solve problems related to XML and DTDs. In theory,
2 However, Irr(X) as we compute it here is still required in complete qualification of

a grammar used in Section 4.



XML Validation for Context-Free Grammars 363

a binoid is similar to a deterministic tree automaton whose size can grow expo-
nentially if we construct it from a nondeterministic tree automaton. However, as
we will see in the experimentation section, binoids are fairly small for practical
XML schemas. For example, we can construct a finite binoid for the XHTML
strict DTD with only 58 elements.

Let B(Σ) be a Dyck set, i.e., the set of balanced strings, over Σ. We have the
following proposition.

Proposition 2. (Existence of binoid) For any regular hedge grammar Greg with
alphabet Σ, we have a finite algebra H(Greg) = (H, ε, F,ˆ( ), ( . )) such that there
is a (homomorphic) mapping ◦ : B(Σ) → H such that

(i) ε◦ = ε,
(ii) (áφà)◦ = â(φ◦) for each a ∈ A,
(iii) (φψ)◦ = φ◦.ψ◦, and
(iv) φ ∈ L(Greg) iff φ◦ ∈ F .

This algebra H(Greg) is called a binoid [PQ68]. Similarly to monoids, ( . ) is
associative and ε is its unit. A difference from monoids is that we now have a
new operator (̂ ), corresponding to construction of tree node, or enclosure by
parentheses. We can construct a binoid from a regular hedge grammar using a
variation of the algorithm of tree automata determinization [Toz06].

Example 4. A grammar in Example 2 is captured by the following binoid with
three elements.

H = {η0, η1, η�}, ε = η0, F = {η1},
â(ηk) = ηk

b̂(ηk) =

{
η1 (k = 0)
η� (otherwise)

(ηk.ηk′ ) =

{
ηk+k′ (k + k′ ≤ 1)
η� (otherwise)

We define the homomorphism ◦ as φ◦ = ηk if φ is a balanced string containing
k occurrences, i.e., 0, 1 or � meaning more than one, of pairs of letters b́ and b̀.
We can easily verify the requirements of binoid, e.g., (b́b̀)◦.(áà)◦ = η1.η0 = η1 =
(b́b̀áà)◦.

The homomorphism (◦) ∈ B(Σ) → H can interpret an arabitrary balanced
word as an element of H so that (1) constructors ε, vw, and áwà for balanced
words are preserved by corresponding operators ε, ( . ) and (̂ ), and (2) the
membership for L(Greg) is preserved by the membership for F . We can judge
whether a set of strings is contained in L(Greg) without enumerating true strings
in the set, but rather by enumerating elements of H computed by H’s operators.
This is the basic idea behind our algorithm.

3.2 Validation Algorithm

Assume that G = (Σ, V, P, I) defines a balanced language. We also assume that
we have a finite binoid H(Greg) = (H, ε, F, (̂ ), ( . )) with a homomorphism
(◦) ∈ B(Σ) → H.
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As mentioned, the idea of the algorithm is to interpret a set of strings gen-
erated for each nonterminal of G using the algebra H(Greg). However, each
string φ such that X

∗−→ φ is not necessarily balanced, but rather partially
balanced. Therefore, we again use the factorization of φ. Assume that Irr(X) =
à1à2 · · · ànán+1 · · · ám. Each φ is factorized as follows:

φ = φ1à1φ2à2φ3 · · · ànφn+1án+1 · · ·φmámφm+1

where φi are balanced strings. Then, assume that a function ν maps a partially
balanced string φ to ν(φ) ∈ H(ΣH)∗ as follows.

ν(φ) = φ◦
1à1φ

◦
2à2φ

◦
3 · · · ànφ◦

n+1án+1 · · ·φ◦
mámφ◦

m+1

Here à1à2 · · · ànán+1 · · · ám is a member of Irr(X). Since G is balanced and H is
finite, the set {ν(φ) | X ∗−→ φ} for each X is finite. Similar to the algorithm of
the balancedness check, we wish to construct this set by induction.

Let us extend ν(φ) to ν(ω) for words ω ∈ (Σ ∪H)∗. In the following rewrite
rules, we assume σ, σ′ ∈ Σ, υ, ω ∈ (H ∪Σ)∗ and η, η′ ∈ H.

υηηω ⇒ υ(η.η′)ω
υáηàω ⇒ υâ(η)ω

υσσ′ω ⇒ υσεσ′ω
σω ⇒ εσω
ωσ ⇒ ωσε

ε ⇒ ε

Now ν(ω) is defined as a normal form such that ω ⇒∗ ν(ω) and ν(ω) can no
longer be rewritten by ⇒. Here, the two rules on the left interpret a given
word using H’s operators. The four rules on the right canonicalize the word
by removing all leftmost, rightmost and two successive occurrences of σ, σ′ ∈ Σ.
Since the rules on the left never introduce such occurrences of σ and σ′, and they
decrease the length of the word, this rewrite terminates. Similar to the discussion
on ρ, we can see that (1) φ◦ = ν(φ) if φ is balanced, and hence ν(φ) ∈ F iff
φ ∈ L(Greg), and (2) ν(ν(φ)ν(ψ)) = ν(φψ) for partially balanced φ and ψ.

Example 5. Some examples using the binoid given in Example 4.

ν(àáàb́) = η0à(áà)◦b́η0 = η0àη0b́η0,

ν(b̀á) = η0b̀η0áη0,

ν(àáàb́b̀à) = ν(ν(àáàb́)ν(b̀á)) = η0àη0.b̂(η0.η0).η0áη0 = η0àη1áη0.

The rest of the algorithm is very close to that of the balancedness check. This
is given in Figure 2.

3.3 Complexity

The dominant factor of the complexity is the size of Abs[X ] for each X . The
number of iterations for the outer loop of the algorithm in Fig. 2 is bounded
by the number of all pairs (X, ω) such that ω ∈ Abs[X ]. The inner loop for
X → γ[X1, . . . , Xn] is repeated |P | times, and the innermost for-each is repeated



XML Validation for Context-Free Grammars 365

Input CFG G = (V,Σ, P, I) defining a balanced language, and binoidH(Greg) = (H, ε,
F,ˆ( ), ( . )).

Output VALID or INVALID.
1 Set Abs[X] = {} for each X ∈ V
2 For each X → γ[X1, . . . ,Xn] ∈ P where X1, . . . ,Xn are nonterminals.

– For each tuple ω1, . . . , ωn such that each ωi ∈ Abs[Xi],
• update Abs[X] := Abs[X] ∪ {ν(γ[ω1, . . . , ωn])}.

3 If some Abs[X] has been updated, go to 2.
4 If Abs[I ] ⊆ F then return VALID else return INVALID.

Fig. 2. The validation algorithm for regular hedge grammars

|Abs[X1]|×· · ·×|Abs[Xn]| times. Computing ν(ω) at most requires time polyno-
mial to |ω| log |H|. The maximal length of strings in Irr(X) is bounded by 2O(|G|).
It is known that the size of H obtained from Greg is at most 2O(|Greg|2). Now for
each X , the size of Abs[X ] is at most Σφ∈Irr(X)|H||φ|+1, hence 22O(|G|+log |Greg|) .
The O-notation absorbs all the other factors, giving 22O(|G|+log |Greg|) -time total
complexity of the algorithm, which is doubly-exponential to the size of G.

4 XML-Grammar Validation

We develop a validation algorithm of a context-free grammar against an XML-
grammar (or DTD) by exploiting its locality. DTDs and XML-grammars have
locality in the sense that they can only describe a relation between an element
(tag) and its children, as we described in the introduction. This locality makes
it possible to decide the inclusion problem L(G) ⊆ L(Gxml) for a CFG G and an
XML-grammar Gxml by checking local properties. As a result, we can obtain an
XML-grammar validation algorithm with time complexity 2O(|G|+|Gxml|).

To formalize the idea, we introduce the notion of the trace and the surfaces
of a balanced string by Berstel and Boasson [BB02]. Every balanced string φ is
uniquely written into the following form:

φ = á1φ1à1á2φ2à2 · · · ánφnàn

where φi are balanced strings. The trace of a balanced string picks up only the
base symbol of the toplevel tags. The trace of φ above is the following string.

Trace(φ) = a1a2 · · ·an

The surface of a in φ is defined as:

Sa(φ) = { Trace(ψ) | áψà is a substring of φ and ψ is balanced }

This formalizes the set of sequences of tags under the a-tag in φ. For example,
the string áb́b̀ćc̀àád́d̀à has the following surfaces for a and b.

Sa(áb́b̀ćc̀àád́d̀à) = { bc, d } Sb(áb́b̀ćc̀àád́d̀à) = { ε }
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By using the surfaces of a string, we can decompose the validation of a context-
free grammar G against Gxml. Consider the following XML-grammar as an
example.

Xa → á(Xa|Xb)(Xa|Xb)à
Xb → b́X∗

b b̀

For the validation, it is sufficient to check the following inclusion relations for
the surfaces of a and b.

Sa(L(G)) ⊆ L((a|b)(a|b)) Sb(L(G)) ⊆ L(b∗)

If we can obtain Sa(L(G)) and Sb(L(G)) as context-free grammars, the inclusion
relations above are decidable since they are inclusion relations between context-
free and regular languages.

We say a context-free grammar is completely balanced if LG(X) is balanced
for every nonterminal of G where LG(X) is the set of strings derivable from
the nonterminal X . If a context-free grammar is completely balanced, then it is
balanced. The other direction does not necessarily apply.

Example 6. The following grammar is balanced, but it is not completely balanced.

A → áb́Bb̀à

B → ε | b̀b́B

where A is a start symbol. It is not completely balanced because B
∗−→ b̀b́, and

b̀ and b́ are end and start tags, respectively.

In the remainder of this section, we first show that we can compute surfaces if
the grammar is completely balanced and then show that any balanced CFG can
be converted into a completely balanced CFG with the same surfaces. Since the
surfaces are preserved by the conversion, it can be used for validation. However,
the language of the obtained completely balanced grammar may not be same as
that of the original grammar.

4.1 Surfaces of a Completely Balanced CFG

We present an algorithm to obtain the surfaces of a completely balanced context-
free grammar. To simplify the presentation, we restrict the format of productions
of a completely balanced CFG to the following forms:

X → áX1 · · ·Xnà
X → X1 · · ·Xn

It is easy to transform a completely balanced CFG into one with productions
with these forms. From a grammar in this format, it is relatively easy to obtain
the grammars representing its surfaces. The first step is to obtain the productions
to produce Trace(LG(X)) for each nonterminal X . Each production in G is
transformed as follows:

G G′

X → áX1 · · ·Xnà ⇒ X → a
X → X1 · · ·Xn ⇒ X → X1 · · ·Xn
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The first rule just picks up a since the strings derived from X1 · · ·Xn are under
the start and end a tags. For example, the productions of the grammar G below
are transformed as follows:

G G′

A → áà ⇒ A → a

B → b́b̀ ⇒ B → b
C → ε | ACB ⇒ C → ε | ACB
D → ćCc̀ | ćDc̀ ⇒ D → c | c

Then, we can construct the context-free grammar representing the surface of
a in G for each a ∈ A. Consider Sc(L(G)) for the grammar G above. For this
grammar, we have Sc(L(G)) = Trace(C) ∪ Trace(D) because a pair of ć and c̀
occurs only in the following two productions.

D → ćCc̀ D → ćDc̀

Therefore, Sc(L(G)) can be represented with a grammar with the following pro-
ductions:

A → a D → c
B → b I → C | D
C → ε | ACB

where I is the start symbol. This grammar generates the following language:

Sc(L(G)) = { anbn | n ≥ 0 } ∪ { c }

The context-free grammars for Sa(L(G)) and Sb(L(G)) are constructed in the
same manner. Then, we can validate G against an XML-grammar using the
surfaces.

4.2 Transformation into a Completely Balanced CFG

The rest of our validation algorithm is to transform a balanced CFG into a
completely balanced CFG with the same surfaces. This is the most involved
part of the XML-grammar validation algorithm. The following grammar shows
that there is a balanced CFG that cannot be represented with a completely
balanced CFG [Knu67].

I → Aà A → á | b́b̀Aćc̀

This grammar generates { (b́b̀)ná(ćc̀)nà | n ≥ 0 }.
We say that a context-free grammar is completely qualified if Irr(X) is a

singleton for every nonterminal X . Given a balanced CFG G, we can construct
a completely qualified CFG G′ where L(G′) = L(G) [Knu67]. Therefore, in this
section, we assume a balanced CFG is completely qualified and write Irr(X) = φ
if Irr(X) = { φ }.
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The transformation we introduce is based on the factorization of partially
balanced strings. Consider the following factorization of a partially balanced
string φ:

φ ≡ φ1à1φ2à2φ3 · · ·φmàmφm+1ám+1φm+2 · · ·φnánφn+1

where φi are balanced. We define the i-th factor Fi(φ) of φ as Fi(φ) = φi.
Let G = (V, Σ, P, I) be a balanced CFG. We construct a completely balanced

CFG G′ with the same surfaces as follows. For each nonterminal X , we introduce
nonterminals Xi (1 ≤ i ≤ |Irr(X)| + 1). Let V ′ be the set of nonterminals Xi

introduced above. Then, we define a function F from V to V ′(ΣV ′)∗ as follows:

F (X) = X1à1X2à1X3 · · ·XmàmXm+1ám+1Xm+2 · · ·XnánXn+1

where Irr(X) = à1à2 · · · àmám+1 · · · án. This function F on nonterminals is nat-
urally extended to a function on (Σ∪V )∗ by F (á) = á and F (à) = à for all base
symbol a.

With this function we can expand production X → γ of G as follows.

F (X) → F (γ)

By construction, F (γ) must have the following form:

F (γ) = γ1à1γ2à2γ3 · · ·γmàmγm+1ám+1γm+2 · · · γnánγn+1

where γi are balanced by considering that nonterminals are balanced. This is
because G is completely qualified and thus Irr(γ) = Irr(X). Then, we construct
G′ = (V ′, Σ, P ′, I1) where P ′ contains the following productions for each pro-
duction X → γ ∈ P .

Xi → Fi(F (γ)) (1 ≤ i ≤ |Irr(X)|+ 1)

It is clear that only balanced strings can be derived from each nonterminal Xi in
G′ since the right-hand side of each production is a balanced factor. Therefore,
G′ is a completely balanced CFG and the following are satisfied:

L(G) ⊆ L(G′)

Sa(G) = Sa(G′) for each a ∈ A

We proved these properties for a CFG G in Chomsky normal form. The first
property is easily shown by construction and the second is obtained from the
following property:

Trace(LG′(Xi)) = Trace(Fi(LG(X)))

An expanded production F (X) → F (γ) above can be considered as a context-
sensitive production rule. To obtain a CFG, we split it into several productions
for factors. This is the source of approximation in the transformation.
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Example 7. Consider again the following grammar considered by Knuth:

I → Aà A → á | b́b̀Aćc̀

where Irr(A) = á and Irr(I) = ε. This grammar generates {(b́b̀)ná(ćc̀)nà | n ≥ 0}.
We have F (A) = A1áA2 and F (I) = I1. Therefore, the productions for A are
expanded as follows:

A1áA2 → á | b́b̀A1áA2ćc̀

From F1(b́b̀A1áA2ćc̀) = b́b̀A1 and F2(b́b̀A1áA2ćc̀) = A2ćc̀, we obtain the follow-
ing grammar:

I1 → A1áA2à A1 → ε | b́b̀A1 A2 → ε | A2ćc̀

This grammar generates { (b́b̀)ná(ćc̀)mà | n, m ≥ 0 }. The constraint between
n and m is lost by the transformation and consequently they do not have the
same language. However, it is clear that it has the same surfaces as those of the
original grammar.

4.3 Complexity

Let n and m be the sizes of a balanced CFG G and an XML-grammar Gxml,
respectively. We assume that the length of the right-hand side of a production of
G is at most two. As described in Section 2, both the cardinality of Irr(X) and
the maximal length of strings in Irr(X) are bounded by 2n for every nonterminal
X in G. We define ι(G) for a balanced CFG G as follows:

ι(G) = max{ |γ| | γ ∈ Irr(X) for some nonterminal X in G }

The first step of the validation algorithm is to obtain an equivalent completely
qualified CFG G1. We can obtain G1 with at most 22n productions by the
transformation of Knuth [Knu67] in time 2O(n). The length of the right-hand
side of a production in G1 is again at most two and ι(G) = ι(G1).

The second step is to obtain a completely balanced CFG G2 that has the same
surfaces with G1. Each nonterminal X with Irr(X) = à1à2 · · · àmám+1 · · · án in
G1 is translated as follows.

F (X) = X1à1X2à1X3 · · ·XmàmXm+1ám+1Xm+2 · · ·XnánXn+1

We have |F (X)| = 2|Irr(X)| + 1 ≤ 2ι(G1) + 1. A production X → γ in G1 is
translated into the following productions.

Xi → Fi(F (γ)) (1 ≤ i ≤ |Irr(X)|+ 1)

It is observed that each production rule is translated into at most ι(G1) + 1
production rules and |F (γ)| ≤ 2(2ι(G1) + 1) since |γ| ≤ 2. Thus, the size of G2

is bounded by O(22n · ι(G1)) = O(23n) and it is obtained in time 2O(n).
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Table 1. XHTML validation

programs size the numbers of time(sec)
depth Irr(X) nonterminals productions binoid surface

WebCalendar 8 4 102 170 0.0121 0.0492
marktree ∞ 4 32 54 0.0023 0.0127
phpScheduleIt 15 8 24 42 0.0062 0.0191
mrtask 11 6 50 70 0.0059 0.0281

To validate a context-free grammar G2 against an XML-grammar Gxml, we
need to check Sa(G2) ⊆ L(Ra) for each Xa → áRaà in Gxml. The size of the
deterministic automaton for Ra has at most 2m states. Because intersection
emptiness between a context-free grammar and an automaton can be checked
in cubic time, the inclusion relation for each surface can be checked in time
2O(n+m). Thus, the complexity of the algorithm in total is in 2O(n+m).

5 Experimental Results

We have implemented our validation algorithms as backend validators of the
PHP string analyzer developed by Minamide [Min05]. The analyzer generates
a CFG that conservatively approximates the string output of a PHP program.
It is available from http://www.score.cs.tsukuba.ac.jp/~minamide/phpsa/.
In our experiments, we checked the validity of Web pages generated by a PHP
program against the XHTML specification. However, we ignored attributes in
our experiments and only checked the constraints on elements imposed by the
specification. As a preliminary step of validation, the analyzer eliminates com-
ments, attributes, and non-tag texts from a CFG and obtains the corresponding
CFG over a paired alphabet. The transformations for this simplification are im-
plemented as string transducers.

In our implementation of the validation algorithms, we first extract the set
of element names appearing in a CFG obtained by the analyzer and delete the
elements from the DTD that do not appear in the set. Without this optimization,
it takes approximately 0.2 seconds to construct the binoid for the XHTML DTD
and this dominates validation time in the binoid-based validation.

We applied our validation algorithms to several PHP programs available from
SourceForge and validated the top Web pages generated by them. We repaired
several validity bugs in these programs and had to modify the programs to im-
prove the precision of the analysis. The experiments were performed on a Linux
PC with two Opteron processors (2.8 GHz) and 8 GB memory. The CFGs were
validated against XHTML version 1.0 Transitional DTD3. Table 1 summarizes
our experiments. The first four columns show the various information concern-
ing the grammars over a paired-alphabet obtained by the analyzer. We checked
the grammars and found that all the grammars are completely qualified. The
3 The content model (r)+ was interpreted as (r)∗ in the experiments to circumvent

imprecision due to analysis of loops in a program.
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columns ‘depth’ and ‘Irr(X)’ show the maximum nesting depth of elements (tags)
and the maximum size of Irr(X). In the last two columns, the table shows the val-
idation time for the binoid-based and the surface-based validation algorithms4.
These do not include the time spent in obtaining the CFGs. These results show
that both algorithms are fast enough for common server-side programs even if
they have theoretically exponential complexity. We think that it is because the
size of Irr(X) is small in practice, as shown in the table, and a regular expression
in a content model of DTD must be deterministic.

It is interesting that the binoid-based validation is faster in these experiments
although it has higher complexity. This may be because the implementation of
the binoid-based validation is simpler than that of the surface-based validation.
However, it is also straightforward to write an artificial program where both of
the algorithms show their exponential behavior. Consider the following program
where $x = $x.$x; $y = $y.$y; is repeated n times.

$x = "<div>"; $y = "</div>";
if (rand()) $x = $x."<p></p>";
$x = $x.$x; $y = $y.$y;
...
$x = $x.$x; $y = $y.$y;
echo $x; echo $y;

The grammar obtained for this program is completely qualified and the size of
Irr(·) for the variables $x and $y is in O(2n). The surface-based algorithm shows
exponential behavior for this program and it takes 1.0, 6.5, and 34.5 seconds to
validate it for n = 10, 11, 12, respectively. On the other hand, the binoid-based
algorithm shows doubly exponential behavior for this program because of the
if-statement in the program and can validate it only when n ≤ 5.

6 Related Work

The PHP string analyzer originally supported only the inclusion checking be-
tween a CFG and a regular expression [Min05]. This checking can partially sup-
port validation of dynamically generated Web pages by restring their depth. It
is because the set of valid Web pages can be described with a regular language
if we restrict their depth. The algorithms in this paper give more direct and
general solutions to the problem.

The XML validation algorithms presented in this paper depend on previous
work on context-free grammars over languages with parentheses. A parenthesis
grammar is a context-free grammar over a language with a single pair of parenthe-
ses where each production has the form of A → (θ) where θ does not contain paren-
theses. McNaughtotn showed that equivalence of parenthesis grammars is decid-
able [McN67].Knuth extended the result and showed that there exists an algorithm
to determine whether a context-free grammar is a parenthesis language [Knu67].
4 We measured the time spent to validate a CFG 100 times. The table shows an

average time calculated from the total time.
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Berstel and Boasson extended the theory of context-free grammars over languages
with parentheses to study the language described by a DTD [BB02]. In this paper,
we have developed a surface-based validation algorithm by exploiting their results
that the language of an XML-grammar has locality and can be characterized by
its surfaces, and the regular hedge grammar validation based on their algorithm
for checking balancedness of a context-free language.

Extensive studies have been done in tree-based validation of dynamically gen-
erated HTML/XML documents [CMS03a, HP03, HVP05]. The motivation of the
work is the same as ours, but the validation algorithms developed in these works
cannot be directly applied to our setting of string-based validation. As shown
in Section 4, we can retrieve a tree-based language for a balanced CFG with
the approximation preserving surfaces of the language. Thus, after the trans-
formation, the methods for tree-based validation can be applied in principle.
Brabrand, Møller, and Schwartzbach proposed summary graphs to approximate
the set of dynamically generated XHTML documents [BMS01]. Although sum-
mary graphs can express constraints on attributes, they basically correspond to
completely balanced CFGs. The validation of a completely balanced CFG can
be considered as a variant of their validation algorithm for summary graphs.

7 Conclusion

We have presented two new algorithms validating a context-free grammar against
a regular hedge grammar and an XML-grammar. Although both have exponen-
tial complexity, it is shown that they are efficient in practice. Our validation
algorithms for regular hedge grammars and XML-grammars have doubly expo-
nential and exponential time complexity. We plan to establish the lower bounds
for these validation problems. For simpler problems, it is known that the inclu-
sion problems for regular expressions and regular hedge grammars are PSPACE-
complete and EXPTIME-complete, respectively. However, gaps remain between
the results and the complexity of our algorithms.

We have considered validation against a subclass of balanced context-free
grammars, such as XML-grammars and regular hedge grammars, but legacy
server-side programs generate HTML, which is not in XML format. In order to
validate those Web pages, we need to consider validation against a grammar
that has an unbalanced language. Although the inclusion problem between two
context-free grammars is undecidable in general, we think that it is possible to
validate a context-free grammar against the HTML specification because it is
designed to be unambiguous and where end tags are omitted can be determined.
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Abstract. The static determination of approximated values of string
expressions has many potential applications. For instance, approximated
string values may be used to check the validity and security of generated
strings, as well as to collect the useful string properties. Previous string
analysis efforts have been focused primarily on the maxmization of the
precision of regular approximations of strings. These methods have not
been completely satisfactory due to the difficulties in dealing with heap
variables and context sensitivity. In this paper, we present an abstract-
interpretation-based solution that employs a heuristic widening method.
The presented solution is implemented and compared to JSA. In most
cases, our solution gives results as precise as those produced by previ-
ous methods, and it makes the additional contribution of easily dealing
with heap variables and context sensitivity in a very natural way. We
anticipate the employment of our method in practical applications.

1 Introduction

Strings are used in many applications to build SQL queries, construct semi-
structured Web documents, create XPath and JavaScript expressions, and so
on. After being dynamically generated from user inputs, strings are sent to their
respective processors. However, strings are not evaluated for their validity or
security despite the potential usefulness of such metrics [5,7,6]. Hence, this paper
aims to establish a method for statically determining the approximated values
of string expressions in a string-generating program.

1.1 Related Works

Previous efforts to statically determine the approximated values of string ex-
pressions have attempted to maximize the precision of string approximations.

Christensen, Møller and Schwartzbach [2] developed a Java string analyzer
(JSA) that approximates the values of string expressions using regular language.
An interprocedural data-flow analysis is first used to extract context-free gram-
mar from a Java program such that each string expression is represented as a
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nonterminal symbol. Then, Mohri and Nederhof’s algorithm [8] is applied to
approximate the context-free grammar with regular grammar. Eventually, the
string analysis produces a finite state automaton that conservatively approxi-
mates the set of possible strings for each specified string expression. JSA tends
to be adequate when every string value is stored in a local variable, but it falters
when dealing with strings stored in heap variables. Perhaps the method could be
extended to deal with such variables, but not in a straightforward and immediate
manner.

To conduct string analysis based on regular expressions, Tabuchi, Sumii,
and Yonezawa [11] created a type system for a minimally functional language
equipped with string concatenation and pattern matching over strings. However,
they failed to provide a type inference algorithm due to a technical problem with
recursive constraint solving. Our analysis can be thought of as a solution to their
problem based on a carefully crafted widening.

Thiemann [12] presented a type system for string analysis based on context-
free grammar and provided a type inference algorithm derived from Earley’s
parsing algorithm. His analysis is more precise than those based on regular ex-
pressions, and though sound, his inference algorithm is incomplete because its
context-free language inclusion problem cannot be solved. The weak point is that
the grammar must be written in terms of single characters rather than tokens.

Minamide [7] also developed a static program analyzer that approximates
string output using context-free grammar. His analyzer, which uses a variant
of the JSA approach to produce context-free grammar from a PHP program,
validates HTML documents generated by a PHP program either by extracting
and testing sample documents or by considering documents with a bounded
depth only.

1.2 Our Approach

Our work is motivated by a desire to statically determine which database ap-
plication program accesses and updates which database tables and fields. Such
information is particularly useful in maintaining huge enterprise software sys-
tems. To obtain this information statically, all possible SQL queries must be
extracted from database application programs as strings.

Strings may be stored as field variables in object-oriented applications, thus a
string analysis must be able to determine their value. For example, the Java ap-
plication in Fig. 1 uses a field variable to construct strings. The class SQLBuffer
is defined as a gateway for connecting to a database server. In this example, two
SQLBuffer objects are allocated and each object has a separate string field, buf.
To prevent the clouding of analysis precision, independent string fields should be
maintained as such. Thus, heap memory analysis is required. Furthermore, the
methods add and set are called multiple times in different contexts. As such,
precise string analysis must also be context-sensitive. For the example in Fig. 1,
our analyzer is able to distinguish possible queries as SELECT .* FROM .* and
UPDATE .* SET .* = .*, while JSA is unable to do so and only gives .* that
means any string.
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Our string analysis uses the standard monotone framework for abstract in-
terpretation [3,4], which allows for context-sensitive handling of field variables.
However, use of the abstract-interpretation framework for string analysis requires
the invention of a reasonable widening operator. Thus, to keep its precision as
high as possible, our widening operator is designed with heuristics.

1.3 Paper Contributions

Our paper makes the following contributions:

– We design a string analyzer based on standard abstract-interpretation tech-
niques. Until now, ascertaining widening operators for regular expressions
has been believed to be difficult [2]. However, by selecting a restricted sub-
set of regular expressions as our abstract domain, which results in limited
loss of expressibility, and by using heuristics, we can devise a precise widen-
ing operator. String operators, such concat, substring, trim, and replace,
are treated uniformly.

– The abstract-interpretation framework enables the integration of the follow-
ing tasks into our analyzer:
• handle memory objects and their field variables
• recognize context sensitivity
• integrate with constant propagation for integers

– Our string analyzer is implemented and tested. The results show the pro-
posed analyzer to be as precise as JSAs in all cases, and even more precise
for test programs dealing with memory objects and field variables.

1.4 Overview

The rest of this paper is organized as follows. Section 2 presents our key abstract
domain, the set of regular strings. Section 3 explains the analysis for a simple
imperative language and extends the analysis for integers, heap-manipulating
statements, and procedures. Section 4 shows the experimental results, and the
paper is concluded by Section 5.

2 Abstract Domain

An abstract string value is modeled as a regular string from within a restricted
subset of regular expressions, and string operations are given abstract seman-
tics. We first define a regular string and then explain the abstract semantics
of concatenation and the widening operator. We subsequently give the abstract
semantics of other string operators: replace, trim, and substr.

2.1 Regular String

A regular string is a sequence of atoms that comprise either an abstract character
or the repetition of a regular string, as shown in Fig. 2. An abstract character is
a set of characters that is, in most cases, a singleton set. For brevity, we omit the
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class SQLBuffer {

String buf;

Connection con;

void set(String s) {

buf = s;

}

void append(String s) {

buf = buf + " " + s;

}

ResultSet execute() throws SQLException {

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(buf);

buf = "";

return rs;

}

}

public class Example {

public void some_fun(String[] args) throws SQLException {

SQLBuffer sql1 = new SQLBuffer();

SQLBuffer sql2 = new SQLBuffer();

sql1.set("SELECT");

sql1.add(args[2]);

sql1.add("FROM");

sql1.add(args[0]);

ResultSet rs = sql1.execute();

while (rs.next()) {

sql2.set("UPDATE");

sql2.add(args[1]);

sql2.add("SET");

sql2.add(args[2] + " = " + rs.getString(0));

sql2.execute();

}

}

// ...

}

Fig. 1. Example

set notation for a singleton set; for instance, instead of {a} {b, c} {d}, we write
a {b, c} d, which is equivalent to a(b + c)d in regular expression. The meaning of
a repetition is as usual.

A regular string is derived from a restricted subset of regular expressions,
which is expressible enough for our purposes. The alternative operator + is
omitted, and the set notation is used to represent the collection of alternatives.
Consecutive repetitions, such as a�b�, are not allowed. To force the termination
of the analysis, the regular expression a�b� is approximated as {a, b}�.

In an abstract state, each variable maps to the set of regular strings.
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Collecting domain:
Var x
Char c
Str s ∈ {c1c2 · · · cn | n ≥ 0, ci ∈ Char}
Statecol S ∈ P(Var→ Str)

Abstract domain:
Chars C ∈ PN(Char) where PN(A) = P(A) \ {∅}
Atom a ::= C | r�

Reg p, q, r ∈ {a1a2 · · · an | n ≥ 0, ai ∈ Atom, ¬∃i.(ai = p� ∧ ai+1 = q�)}
State σ ∈ (Var→ PN(Reg))⊥

Meaning:
Atom→ P(Str) γa(C) = C

γa(r�) = {s1s2 · · · sn | 0 ≤ n, si ∈ γr(r)}
Reg→ P(Str) γr(a1a2 · · · an) = {s1s2 · · · sn | si ∈ γa(ai)}
PN(Reg)→ P(Str) γR(R) =

⋃
{γr(r) | r ∈ R}

State→ Statecol γS(⊥) = ∅
γS(σ) = {λx.sx | sx ∈ γR(σ(x))}

Order:
Reg p % q iff γr(p) ⊆ γr(q)
PN(Reg) P % Q iff γR(P ) ⊆ γR(Q)
State σ % σ′ iff γS(σ) ⊆ γS(σ′)

Fig. 2. The Abstract Domain

2.2 Concatenation and Widening

The abstract semantics of string concatenation is defined as follows: two regular
strings are sequentially ordered, except for when initial and subsequent regular
strings end and begin, respectively, with a repetition, as defined in Fig. 3. If the
two repetitions are the same, one is thrown away; otherwise, the two are brutally
merged.

The widening operator of two regular strings is designed minimize precision
loss while allowing for analysis termination. Two sets of regular strings can be
widened simply by widening every pair of two input sets, but with the possi-
ble result of an unnecessarily large string. For instance, consider where after
one loop iteration of {a, b} becomes {aa, ba}. The most reasonable analysis so-
lution should be {aa�, ba�}, so we would want to choose {a∇aa, b∇bb} instead of
{a∇aa, a∇ba, b∇aa, b∇ba}. Hence, we define P∇Q = {p∇q | p ∈ P, q ∈ Q, pR q}
to give total relation R : P ×Q. The method for finding such a relation is dis-
cussed after the explanation of the widening operator for regular strings.

To widen two regular strings, we identify their common and different compo-
nents, pick and leave unchanged the common parts, and then merge the different
parts. For instance, suppose we compute acd∇abc, where the common compo-
nents are the bold characters in acd and abc. We first pick a, then extract b�

from the merger of ε and b, then pick c, and then extract d� from the merger of d
and ε. Therefore, by concatenating the components, the two original inputs are
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P ·Q = {p · q | p ∈ P, q ∈ Q}

p · q =

⎧⎨⎩
p′r�q′ if p = p′r�, q = r�q′

p′ {c | c appears in r or r′ }� q′ if p = p′r�, q = r′�q′, and r �= r′

pq otherwise

σ∇kσ′ =

⎧⎪⎪⎨⎪⎪⎩
σ if σ′ = ⊥
σ′ if σ = ⊥
λx.

{
.p∇k.q | p ∈ σ(x), q ∈ σ′(x), pR q

}
otherwise

for a total relation R : σ(x)× σ′(x)

p.q∇kp′.q′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pq -k p′q′ if q = ε or q′ = ε

(p-k p′) · a · (.r∇k.r′) if q = ar, q′ = ar′, and star-height(a) ≤ k
pa.r∇kp′a.r′ if q = ar, q′ = ar′, and star-height(a) > k

pa.r∇kp′.a′r′ if q = ar, q′ = a′r′, a �= a′, and |q| > |q′|
p.ar∇kp′a′.r′ if q = ar, q′ = a′r′, a �= a′, and |q| ≤ |q′|

where |q| = n for q = a1a2 · · · an

and star-height(a) is the depth of repetitions of q

p-k q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if p, q ∈ {ε}
p� if p �= ε, q = ε, and star-height(p�) ≤ k
q� if p = ε, q �= ε, and star-height(q�) ≤ k
(.p′∇k−1.q′)� if p = p′�, q = q′�, and k ≥ 2

(.p′∇k−1.q)� if p = p′�, q �= q′�, and k ≥ 2

(.p∇k−1.q′)� if p �= p′�, q = q′�, and k ≥ 2
{c | c appears in p or q }� otherwise

Fig. 3. Abstract Concatenation and Widening

widened to ab�cd�. This method is problematic, though, as the different compo-
nents of multiple regular strings may be determined with different results. For
instance, for cd and cdd, we can say that cd is common and the last d of cdd is
different: cd and cdd, or the middle d of cdd is different: cd and cdd. We solve
this dilemma by traversing the string from left to right. The marker . is used to
indicate the position of string traversal. That is, p.q indicates that p has been
traversed and identified as different, and that q has not been traversed. Thus the
current atom is always next to the dot(.) on the right. There exist three possible
cases of string traversal:

– After one regular string has been completely traversed, we conclude that
the two regular strings are different. Thus, we merge them with the mash
operator, �, which is discussed below.

– When we find a common atom, we merge the two different parts on the left,
widen the rest of strings on the right, and then concatenate them in order.

– When two current atoms differ, we pick the longer string (the string with
more atoms) and move the dot one atom to the right in the picked string.

For instance, consider the case of .abc∇.ac. First, we find that a is common and
move to the adjacent string to the right, .bc∇.c, where the current atoms b and
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c are different. Since bc is longer than c, we conclude that b is different: b.c∇.c.
We again meet the common character c, so we mash b and ε to obtain b�. In
conclusion, abc and ac are widened to ab�c, where a and c are picked as common
string components.

The mash operator � yields precise results for the following cases.

– When one of its operands is empty, the other non-empty regular string is
most likely to be repeated. Thus, the repetition of the non-empty regular
string is returned. If both operands are empty, an empty regular string is
returned.

– When both operands are repetitions, regular strings in the bodies of the
repetitions are widened, and then the repetition of the widened result is
returned.

– When only one of its operands is a repetition, a regular string in the body
of the repetition and the other regular string are widened, and then the
repetition of the widened result is returned.

For other cases, two regular strings are brutally mashed to conform to the form
of C�.

During widening or mashing regular strings, we control the star height. The
superscript k of widening operator ∇k and mash operator �k indicates that the
star height of the result should be less than or equal to k. In mashing two regular
strings, k is decreased when we go one level deeper inside a repetition. When
k < 2, instead of going one level deeper inside, we brutally merge two regular
strings so that the star height of the result is one. In theory, we cannot guarantee
the termination of our analysis without some form of star-height control. As
shown by our experiments, however, our analysis seems to terminate without
star-height control (i.e., k = ∞).

We now discuss in detail the clever widening of two sets of regular strings.
The procedure aims to find the total relation of two sets so that similar regular
strings are related. One pair of regular strings is more similar than the other if
it maintains more common components. When the number of common compo-
nents is equal, the pair with fewer differing components is considered to be more
similar. The algorithm to find the total relation of two sets is as follows: (1) For
each regular string in the smaller set, find the most similar regular string in the
larger set and pick related pairs until the smaller set is empty; (2) The leftover
regular strings in the larger set find their similar counterparts from the original
smaller set. For instance, consider {a, b} and {ba, bb, bc}. For a in the smaller
set, we pick the most similar one ba. For b, since the leftovers bb and bc tie, we
arbitrarily choose one bb. Since all regular strings in the smaller set are picked,
the leftover bc finds the most similar one b from {a, b}.

Theorem 1. ∇k : State × State → State is a widening operator which satisfies
the followings:

1. σ � σ∇kσ′ and σ′ � σ∇kσ′; and
2. the ascending chain by ∇k is always finite when the cardinality of sets of

regular strings is bounded.
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We only sketch the proof of the termination argument. The widening sequence of
abstract states is finite if the sequence of regular strings is finite for each variable,
which can be proved as follows. We can consider every regular string p as a form
r1C1r2C2r3 · · ·Cnrn+1 where ri is an empty string or a repetition because we do
not allow adjacent repetitions. For instance, abc� can be considered as εaεbc�.
By using the canonical form, we define the size tree of regular strings:

– |ε|T = 〈ω〉 where ω is an arbitrary big tree, and
– |r1C1r2C2 · · ·Cnrn+1|T =

〈
|r1|I , |C1|, |r2|I , |C2|, · · · , |Cn|, |rn+1|I

〉
where

|C| = Int(i) when i is the size of character set C.

where |ε|I = ω, |C�|I = |C|, and |r�|I = |r|T if r �= C. The order among trees is
defined as: Int(i) ≤ t ≤ ω for all tree t which is not an integer, Int(i) ≤ Int(j) if
i ≥ j, and 〈t1, t2, · · · tn〉 ≤ 〈t′1, t′2, · · · , t′m〉 if n < m, or n = m and ti ≤ t′i for all
0 ≤ i ≤ n. We proved that |.p∇k.q|T ≤ |p|T , and that |.p∇k.q|T = |p|T implies
that .p∇k.q = p. We also showed that every sequence t0, t1, · · · , tn is finite when
ti > ti+1 for all 0 ≤ i < n because we limit the depth of the trees. Therefore,
every sequence widened by ∇k is finite.

2.3 Other String Operators

The abstract versions of string operators trim, replace, and substr are defined
in Fig. 4. replace(c,c′) replaces all occurrences of character c with character c′

in the given regular string. trim removes blanks at both ends of the given string.
However, for presentation brevity, we assume that trim removes blanks only at
the front end. The abstract trim operator traverses the given regular string from
left to right.

– If we reach an abstract character {′ ′}, we continue trimming.
– If we reach an abstract character C which includes a blank, we have to

consider two possibilities: when the concretized character is a blank and
when it is a non-blank.

– If we reach a repetition r�, we consider two possibilities: (1) when r� becomes
empty after trimming it off, we continue trying for the rest; (2) when r�

becomes a non-empty string, we trim r off and put the result in front only
when the result is not empty.

– If we reach an abstract character which does not include a blank, we stop.

substr(i, j) extracts a substring from the ith position to the (j − 1)th position
of the given string. When we reach a repetition r� when finding a substring, we
also consider two possibilities: (1) r� is concretized to an empty string, and (2)
r� is concretized to a non-empty string. For possibility (2), r� is unfolded once to
yield r ·r�, from which substrings are extracted. Other cases are straightforward.

Previous string analyzers do not properly handle string operations. In JSA
and Minamide’s analyzer, string operations other than concatenation use rough
approximations to break cycles of string productions [2,7]. In our analyzer,
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Abstract operator [[op]] : Reg→ P(Reg) for op ::= replace(c, c′) | trim | substr(i, j)

[[replace(c, c′)]]p= {p{c′/c}}

[[trim]]p =

⎧⎪⎨⎪⎩
[[trim]]q if p = {′ ′} q
[[trim]]q ∪ ((C \ {′ ′})q) if p = Cq and {′ ′} ⊂ C
[[trim]]q ∪ ({r′ · r�q | r′ ∈ [[trim]]r, r′ �= ε} if p = r�q
{p} otherwise

[[substr(i, j)]]p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ε} if i = 0 and j = 0
{C} · [[substr(0, j − 1)]]q if i = 0, j > 0, and p = Cq
[[substr(i− 1, j − 1)]]q if i > 0, j > 0, and p = Cq
[[substr(i, j)]](r · r�q) ∪ [[substr(i, j)]]q if i ≥ 0, j > 0, and p = r�q
{} otherwise

Fig. 4. Abstract String Operators

abstract string operations are applied during analysis on demand. Hence, with
our method, it is not at all an issue whether or not string operations are in cyclic
productions. For example,

x = "a";
for(i=0; i<10; i++) {
x = x + "b ";
x.trim();

}

Our analyzer returns the exact answer: ab�, while JSA gives the most imprecise
answer: (a+b+’ ’)�

3 Analysis

In this section, we describe our string analysis. We first define the analysis for a
core imperative string-processing language. We next extend it to cover constant
propagation for integers. Then we show how to handle heap objects. Finally, we
close this section by briefly explaining the interprocedural version.

3.1 Analysis for the Core Language

The analysis of the core imperative language is defined in Fig. 5 based on the
standard abstract interpretation technique. An expression may be a string con-
stant s, a variable x, a string concatenation e+e, or another string operator
x.op. For a string concatenation, we use the abstract concatenation operator ·
defined in Fig. 3. For other string operators, we use their abstract version de-
fined in Fig. 4. A statement is either a no-operation skip, an assignment x:=e,
a sequence t;t, a conditional statement if t t, or a loop while t. For the case
of a loop, we use the widening operator defined in Fig. 3 to compute a widen
sequence until it is stabilized. Note that the boolean expression in conditional
statement and loop is not considered.
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E [[e]] : State→ P(Reg) for e ::= s | x | e+e | e.op
E [[s]] σ = {C1 · · ·Cn | s = c1c2 · · · cn, Ci = {ci}}
E [[x]]σ = σ(x)
E [[e1+e2]] σ = E [[e1]]σ · E [[e2]]σ
E [[e.op]]σ =

⋃
{[[op]]p | p ∈ E [[e]] σ }

T [[t]] : State→ State for t ::= skip | x:=e | t;t | if t t | while t
T [[t]]⊥ = ⊥
T [[skip]] σ = σ

T [[x:=e]] σ =

{
σ[E [[e]]σ/x] if E [[e]] σ �= ∅
⊥ if E [[e]] σ = ∅

T [[t1; t2]] σ = T [[t2]] (T [[t1]] σ)
T [[if t1 t2]]σ = T [[t1]] σ $ T [[t2]] σ
T [[while t]]σ = fix∇λσ′.σ $ T [[t]] σ′

Fig. 5. The Analysis for the Core Language

3.2 Integers

String-manipulating programs sometimes convert integer values to strings. To
increase the precision of our analysis, a constant propagation for integers is added
to our analysis, as defined in Fig. 6. We assume that programs are well-typed.
That is, we assume that each variable only has values of its type, and thus a
widening operator may be applied to string-typed variables.

3.3 Handling Heap Objects

Our method uses a well-known technique [1] to handle heap objects: (1) a heap
object is abstracted by its allocation site; for instance, two heap objects allocated
at the same program point are summarized as one abstract heap object; and
(2) for each abstract heap object, we record the number of heap objects that
are abstracted. This information is used to strongly update the content of a
heap object. If an abstract heap object represents only one heap object, we can
strongly update its content; otherwise, we cannot.

In the extended abstract domain for handling heap memory, shown in Fig 7,
the location domain identifies allocation sites. The value domain is extended to
include locations and a null-pointer value. The heap domain is a partial map
from locations to their possible objects. An object consists of one value because
we only consider objects with size equal to one. In addition, every object is
tagged to indicate whether it is unique.

The analysis extended to deal with three heap-manipulating statements is de-
fined in Fig 7. The additional statements are an allocation statement x:=newl,
a load statement x:=[y], and a store statement [x]:=y. Note that every allo-
cation statement is marked with a label, the size of every object is always one,
and we assume that the initial value for a new heap object is nil.
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Abstract domain: Value V ∈ PN(Reg) + Z�

State σ ∈ (Var→ Value)⊥
Order:

Value V % V ′ iff V, V ′ ⊆ Reg and γR(V ) ⊆ γR(V ′)
or V, V ′ ∈ Z� and (V ′ = ) or V = V ′)

State σ % σ′ iff σ(x) % σ′(x) for all x ∈ Var

I[[ie]] : State→ Z� for ie ::= i ∈ Z | x | ie iop ie for iop ∈ {+,−,×, · · ·}
I[[i]]σ = i
I[[x]]σ = σ(x)

I[[ie1 iop ie2]]σ =

{
I[[ie1]]σ iop I[[ie2]]σ if I[[ie1]]σ �= ) and I[[ie2]]σ �= )
) if I[[ie1]]σ = ) or I[[ie2]]σ = )

T [[t]] : State→ State for t ::= · · · | x:=ie
T [[x:=ie]] σ = σ[I[[ie]]σ/x]

Fig. 6. The Extension for Integers

– For the allocation statement x:=newl, if there is no heap object previously
abstracted as l, that is, l is not in the domain of the abstract heap, we add
a new object to the abstract heap, initialize its content as nil, and tag it
with 1. Otherwise, that is, if there already exist some objects abstracted by
l, we weakly update its content by the initial value nil and tag it with ω.

– For the load statement x:=[y], we get the content of y from the abstract
heap and update x.

– For the store statement [x]:=y, if x points to a single, unique object, we
strongly update its content. Otherwise, we weakly update the content of
objects that x may point to.

These statements may be straightforwardly extended to other cases. For the
loop case, we apply widening to regular strings in both the abstract state and
abstract heap.

3.4 Interprocedural Analysis

The interprocedural version of our analysis employs a standard technique named
1-CFA [10,9]. We collect the possible states of each procedure at all of its call
sites, making it possible to output states by computing the procedure body. The
analysis result is achieved by a fixed-point iteration. If the procedure is called
more than twice at different call sites, we separately keep the abstract state for
each call site, and separately compute the procedure body for each call site. This
is made possible by annotating contexts to abstract states. Since we use the 1-
CFA technique, in which the context keeps the last call site only, the analysis
precision can be blurred for nested calls.

Since recursive procedures may induce non-termination of our analysis, we
also compute the widening sequence of inputs and outputs of the methods.
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Abstract domain:
Loc l
Value V ∈ PN(Reg) + Z� + PN(Loc + {nil})
State σ ∈ Var→ Value
Uniqueness u ∈ {1, ω}
Content V u ∈ Value× Uniqueness
Heap h ∈ Loc ⇀ Content

Order:
Value V % V ′ iff V, V ′ ⊆ Reg and γR(V ) ⊆ γR(V ′)

or V, V ′ ∈ Z� and (V ′ = ) or V = V ′)
or V, V ′ ⊆ Loc ∪ {nil} and V ⊆ V ′

State σ % σ′ iff σ(x) % σ′(x) for all x ∈ Var
Uniqueness 1 % ω
Content V u1

1 % V u2
2 iff V1 % V2 and u1 % u2

Heap h1 % h2 iff dom(h1) ⊆ dom(h2)
and h1(l) % h2(l) for all l ∈ dom(h1)

(State× Heap)⊥ ⊥ % (σ, h)
(σ1, h1) % (σ2, h2) iff σ1 % σ2 and h1 % h2

T [[t]] : (State× Heap)⊥ → (State× Heap)⊥ for t ::= · · · | x:=newl | x:=[x] | [x]:=y

T [[t]]⊥ = ⊥

T [[x:=newl]] (σ, h) =

{
(σ[{l} /x], h[{nil}1 /l]) if l �∈ dom(h)
(σ[{l} /x], h[(V ∪ {nil})ω/l]) if l ∈ dom(h) and h(l) = V u

T [[x:=[y]]] (σ, h) =

{
(σ[V ′/x], h) if V ′ �= ∅
⊥ if V ′ = ∅

where V ′ =
⋃
{V | l ∈ σ(y), h(l) = V u }

T [[[x]:=y]] (σ, h) =

{
(σ, h[σ(y)1/l]) if σ(x) = {l} and h(l) = V 1

(σ, h′) otherwise

where h′ = λl.

⎧⎨⎩
h(l) if l ∈ dom(h) and l �∈ σ(x)
(σ(y) ∪ V )u where h(l) = V u if l ∈ dom(h) and l ∈ σ(x)
undefined if l �∈ dom(h)

Fig. 7. The Extension for the Heap

4 Experiments

We built a string analyzer for Java applications that employs our approach, and
we tested its performance and precision for comparison with JSA. For a Java
application with hotspots1, our string analyzer produces a set of regular strings
for each hotspot. We used Objective Caml as the implementation language and
a Linux PC with an Intel PentiumD 830 processor (3.0 GHz) and 2 GByte
memory.

The table in Fig. 8 shows the experimental results of 19 programs. The first 14
programs were those tested by JSA, and the final 5 programs were selected from
sample programs in the BEA KodoTM Enterprise Data Access library. Both JSA
1 A hotspot is the program point where an interesting string expression is located.
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Example Lines Hotspots Calls Objects Loops JSA(s) OSA(s)

Switch 21 1 1 0 0 1.33 0.42

ReflectTest 50 2 15 2 2 1.6 0.43

SortAlgorithms 54 1 3 0 0 1.35 0.4

CarShop 56 2 8 2 0 1.39 0.51

ProdConsApp 3,496 3 1,224 311 34 9.95 25.12

Decades 26 1 9 0 2 1.91 0.47

SelectFromPer 51 1 16 0 1 1.61 0.39

LoadDriver 78 1 20 0 1 1.84 0.4

DB2Appl 105 2 26 0 1 1.74 0.48

AxionExample 162 7 76 1 1 1.83 0.59

Sample 178 4 47 0 1 2.08 0.55

GuestBookServlet 344 4 131 6 3 4.18 0.71

DBTest 384 5 127 13 3 2.88 1.19

CoercionTest 591 4 378 18 11 18.38 1.58

CustomFieldsMain 1648 17 451 24 4 2.96 0.93

CustomProxiesMain 477 9 76 8 1 1.97 0.72

CustomSequenceMain 280 9 38 3 2 1.12 0.47

ExternalizationFieldsMain 666 2 164 21 0 2.09 1.52

TextIndexMain 396 8 71 11 6 1.51 0.46

Fig. 8. Experimental Results

Example JSA OSA

CustomFieldsMain Inserted:

CustomFields<.�>:.� name:

.� male: .� point: .�

xml: .�

{Inserted:
CustomFields<.�>:.� name:

name.� male: false.� point:

.�[x=1,y=2].� xml: .�}
ProdConsApp .� {Adv SyncGet, Adv SyncPut, .�}

SortAlgorithms DefaultSortAlgorithms$(C
ounting+Quick)Sort

{.�}

Fig. 9. Precision Comparison

and our string analyzer were tested for comparison. The number of lines ranged
from 21 to 3,496. To show the characteristics of programs, we collected the num-
ber of hotspots, the number of method calls, the number of new statements,
and the number of loops. Columns JSA and OSA indicate analysis run times, in
seconds, of JSA and our string analyzer. Our string analyzer completed analysis
more quickly than JSA of all programs except the ProdConsApp, for which our
analyzer was about 2.6 times slower. The speed-up is probably due to the im-
plementation language used (Java versus OCaml). For the slower case, we guess
that the large number of calls increased the number of times that method bodies
were analyzed.
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The results produced by our analyzer have been as precise as those yielded by
JSA in most of the cases we have tested. However, the precision of some results
differed, as shown in Fig. 9. For CustomFieldsMain, our analyzer gives more
precise results due to its ability to analyze heap variables. For ProdConsApp,
our string analyzer gives extra information than does JSA2, as the two sets of
regular strings are unioned when they are combined. On the other hand, JSA
gives better results for SortAlgorithms because our current implementation
ignores arrays.

5 Conclusion and Future Works

A string analyzer based on the abstract-interpretation framework is designed and
implemented. A carefully crafted widening operator is devised to maintain the
highest possible precision. Our solution generally gives results comparable to those
of previous methods, and it understands heap variables and context sensitivity
unlike others. We expect the method to be more suitable to practical applications.

Our string analyzer uses regular expressions that lack the expressibility re-
quired for checking the syntax of generated strings and for handling strings with
escaped characters. Future work could aim to produce abstract string represen-
tations with more expression power while still employing the widening operator
of our method.
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Abstract. We present a program logic for virtual machine code that may serve
as a suitable target for different proof-transforming compilers. Compilation from
JML-specified source code is supported by the inclusion of annotations whose
interpretation extends to non-terminating computations. Compilation from func-
tional languages, and the communication of results from intermediate level pro-
gram analysis phases are facilitated by a new judgement format that admits the
compositionality of type systems to be reflected in derivations. This makes the
logic well suited to serve as a language in which proofs of a PCC architecture are
expressed. We substantiate this claim by presenting the compositional encoding
of a type system for bounded heap consumption. Both the soundness proof of
the logic and the derivation of the type system have been formally verified by an
implementation in Isabelle/HOL.

1 Introduction

Modeling languages such as JML [25] allow the software architect to specify functional
and non-functional behaviour of code modules. Typically, these languages comprise a
variety of specification idioms such as partial-correctness specifications using pre- and
post-conditions, termination measures, specification of exceptional behaviour, model
fields, ghost variables and fields, invariants at object or class level, lightweight specifi-
cations, or the inclusion of pure (i.e. non-side-effecting) code in specification clauses.
Although the precise interpretation of some of these features is still a matter of ongoing
debate, a number of verification tools have been presented that validate code w.r.t. JML
specifications [14]. Although the proposed formalisms mainly target Java source code,
they can relatively easily be adapted to bytecode.

The adaptation of specification constructs to low-level code admits a smooth transla-
tion of high-level specifications into specifications of mobile code units. However, we
do not expect that a similarly direct transfer of validation strategies such as verifica-
tion condition generators would suffice for their verification, for two reasons. Firstly,
bytecode that was obtained by compilation from languages other than Java may not be
amenable to the same proof strategies, or may lead to different verification conditions if
it has undergone an obfuscation routine. Secondly, a recipient may require transmitted
code to be complemented by a proof certifying that the code is safe to execute [28].
Typically, the production of certificates exploits results of program analyses such as
type systems. In this case, the validation of certificates by the code consumer is sup-
ported if the type system’s structuring principles (invariants) are communicated as part
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of the certificate [4,13]. Again, it is not guaranteed that these abstraction barriers are
respected by a verification strategy for source code verification.

In this paper, we therefore propose a program logic for a bytecode language that sat-
isfies requirements motivated by JML specifications and admits different verification
strategies to be implemented, including strategies that are suitable for validating high-
level type systems. More specifically, we present a formalism where partial-correctness
method specifications can be complemented by method invariants and local annota-
tions at intermediate program points whose interpretation applies to terminating as well
as non-terminating program executions. Non-terminating executions are not covered
by traditional (partial or total) Hoare logics, but are required for a faithful interpreta-
tion of JML code annotations. They are also desirable for proof-carrying code (PCC)
frameworks: the significance of a certificate regarding the safety or the consumption of
resources is increased if its validity does not derive from a partial-correctness interpre-
tation - for example, consider a certificate purporting to guarantee an upper bound on
the runtime. On the other hand, non-terminating program executions are often implic-
itly covered by program analysis formalisms such as type systems, but this fact is often
not stated (or proven) explicitly, for example if the soundness proof is formulated as
a syntactic subject-reduction proof w.r.t. a big-step operational semantics. In order to
demonstrate the suitability of our logic for the interpretation of such type systems, we
present the syntax-directed encoding of a type system for bounded heap consumption
which covers terminating and non-terminating executions.

For presentational reasons, the program logic described in the present paper cov-
ers only a small fragment of the JVML. However, in collaboration with partners from
the Mobius project [8], a variation of the logic has been produced that covers a more
substantial subset of JVML, including virtual method invocations, static fields, arrays,
exceptions, and various datatypes. At the same time, work is under way to translate JML
specification constructs that are not considered in the present paper into the extended
logic, in particular the constructs of JML specification level 0 [25].

Motivation and overview of assertion format. The format of judgements in a program
logic is strongly influenced by semantic considerations, i.e. by the conclusions one may
draw from a derivable judgement regarding the operational behaviour. Our logic aims
to fulfill two sets of requirements. The first requirement concerns JML annotations at
intermediate program points. Their common understanding mandates that an assertion
A associated to a program point � should be satisfied whenever the control flow reaches
�. At first sight, this interpretation motivates a notion of validity like

∀ s. �0, s0 →∗ �, s ⇒ A(s) (1)

where s0 denotes the entry state of the program fragment (e.g. method) and �0 the label
of the first instruction. Indeed, this interpretation extends partial-correctness program
logics by also applying to non-terminating program executions. Furthermore, the gen-
eralisation to binary predicates A, with validity defined by

∀ s. �0, s0 →∗ �, s ⇒ A(s0, s), (2)

admits assertions to refer to the initial state, as is required for the translation of idioms
such as JML’s old keyword [22].



A Bytecode Logic for JML and Types 391

Although program logics motivated by such an interpretation have been proposed
[32,7,1], the resulting proof systems appear unsatisfactory, since they mandate the con-
current satisfaction of local conditions at all program labels, for a fully annotated pro-
gram. For example, the proof rule for program points in Rinard’s logic [32] involves
a universal quantification over all predecessor labels. This, in our opinion, precludes
local reasoning, by which we mean that the validity of an assertion at a program point
� should refer to the phrase represented by �. Local behaviour is the source from which
type systems for high-level languages draw their compositionality. In order to achieve
our second goal, the interpretation of type systems, it appears necessary that this behav-
iour be reflected in the logic. Thus, an assertion at � should constrain executions from �
onwards, irrespective of the path used to reach �. While this demand contradicts a for-
mulation following (1), it would enable us to exploit the syntax-directedness of typing
rules in the proofs of derived proof rules, i.e. of lemmas for a syntactically determined
subclass of assertions.

In Bannwart and Müller’s logic [7], program points are decorated with (unary) asser-
tions E that are interpreted w.r.t. a partial-correctness specification of the surrounding
method. Assuming a fully specified program, each local judgement � {E�} � is valid if
the satisfaction of E� in the state prior to executing the instruction at � guarantees the
satisfaction of the assertions of all successor labels of �:

∀ s. �0, s0 →∗ �, s ⇒ E�(s) ⇒ ∀ �′ s′. �, s → �′, s′ ⇒ E�′(s′). (3)

Thus, E� denotes a pre-condition for E�′ and consequently (by transitivity) for the
method specification (which is identical to the specification of the return instruction).
However, this format does not admit a rule of consequence, as E� in (3) suggests that
assertions could be strengthened, while E�′ suggests that they can be weakened, which
is also what one would expect from JML annotations. Furthermore, the fact that the
final state is only mentioned indirectly, via the implicit reference to the method specifi-
cation, is an obstacle to local reasoning: the method specification relates a final state of
a (terminating) execution only to the initial state, but not the state at label �.

Our proposed solution consists of introducing several assertion forms, with specific
roles. Judgements explicitly relate a program point � to a (binary) pre-condition A, a
(ternary) post-condition B, and a (ternary) invariant I , and implicitly refer to a global
table Q that assigns (binary) annotations Q to some program points (not all program
points are required to be annotated). Informally, the interpretation of such a judgement
asserts that whenever � is reached from s0 with current state s, and A(s0, s) holds, then

– B(s0, s, t) holds, provided that the method terminates with final state t
– I(s0, s, H) holds, provided that H is the heap component of any state aris-

ing during the continuation of the method invocation surrounding s, in-
cluding invocations of further methods, i.e. subframes

– Q(s0, s
′) holds, provided that s′ is reached at some label �′ during the

continuation of the method invocation surrounding s, but not including
subframes, where Q(�′) = Q

In order to support the descent into subframes in the interpretation of invariants, partial-
correctness method specifications are complemented by method invariants which relate
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the frame-initial state to the heap component of any state arising during the execution
of the method (including subframes), irrespective of its termination behaviour. Both
kinds of invariants are thus strong invariants in the sense of Hähnle and Mostowski
[19]: they mandate that the property holds throughout the execution of a program frag-
ment, instead of merely stipulating that the property holds upon termination whenever
it was satisfied in the initial state. The decision to consider only a state’s heap compo-
nent in invariants is motivated by the fact that the operand stack and the (naming of)
local variables should be considered implementation details of a method. For example,
the substitution of a method by an improved implementation that uses different local
variables should not affect invariants of surrounding methods.

The proposed format admits the expected rule of consequence where pre-conditions
can be strengthened, while post-conditions and invariants may be weakened. Further-
more, JML annotations are directly supported as these may be collected in Q and will
be satisfied whenever the annotated label is visited, irrespective of the termination be-
haviour. References to the frame-initial state are also supported, thus enabling the direct
translation of specification idiom old. Finally, the format enables syntax-directed inter-
pretations of type systems as all items involved in the execution of the code fragment
starting at � are available in the judgement for �. Conceptually, the emphasis on syntac-
tic structure that distinguishes our logic from the above-mentioned work appears similar
to the difference between Hoare logic and Floyd’s reasoning techniques for flowcharts.

Synopsis. The remainder of this paper is structured as follows: in Section 2, we present
syntax and operational semantics of a small bytecode language which serves as our
vehicle for presenting the logic. This allows us (Section 3) to formally define our no-
tion of validity. We then present the proof system and outline its soundness proof. We
demonstrate the suitability of the logic for giving interpretations of type systems that
affect terminating and non-terminating program executions by outlining the encoding
of a type system for bounded heap consumption in Section 4. Finally, we conclude and
discuss related work. The material presented in Sections 2 to 4 is based on a develop-
ment of the logic in the theorem prover Isabelle/HOL, including a formalised soundness
proof and a formal derivation of the encoded typing rules. Following the approach advo-
cated by Kleymann [24], the formalisation uses a deep embedding of the programming
language syntax, while assertions are embedded shallowly in the meta-logic of the the-
orem prover. The corresponding Isabelle sources are available from [12].

2 Syntax and Dynamic Semantics

For the purpose of this paper, we consider instructions

ins ::= Load x | Store x | Const z | Unop u | Binop o | New c | Getfield c f |
Putfield c f | Goto l | If0 l | Invokestatic M | Return

where x ranges over a set X of (local) variables (also called registers), z over integer
constants and Null, u and o over unary and binary operations (like isNull, add, mul,. . . ),
respectively, c over a set C of class names, f over a set F of field names, l over a set L
of program labels, and m over a set M of method names. All these sets are assumed to
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be mutually distinct. Method identifiers M = (c, m) combine class and method names,
and program points � are of the form � = M, l.

A method definition (par , l, body, suc) consists of a list par = [x1, . . . , xn] of (dis-
tinct) formal parameters, the label l of the first instruction, a method body body , rep-
resented as a finite map from program labels l to instructions, and a partial function
suc : L ⇀fin L that maps labels to their control flow successors.

A program consists of a finite map from method identifiers to method definitions.
All notions in the remainder of this paper are formulated with respect to an arbitrary
but fixed program, which we denote by P . For P (M) = (par , l, body , suc) we also
write initM for l, M(l) for body(l), and sucM for suc .

The dynamic semantics is defined over a set V of values that is ranged over by v and
comprises constants z and addresses a ∈ A. JVM states s ∈ Σ are built from operand
stacks, stores, and heaps

O ∈ O = V list s ∈ Σ = O × S ×H
S ∈ S = X ⇀fin V s0 ∈ Σ0 = S × H

H ∈ H = A ⇀fin C × (F ⇀fin V) t ∈ T = H× V .

The categories Σ0 and T represent initial and terminal states which occur at the begin-
ning (end) of a frame’s execution. For s0 = (S, H) we write state(s0) = ([ ], S, H) for
the local state that extends s0 with an empty operand stack. For par = [x1, . . . , xn] and
O = [v1, . . . , vn] we write par �→ O for [xi �→ vi]i=1,...,n. Finally, we write heap(s)
to access the heap component of a state s, and similarly for initial and terminal states.

As in [7], the operational semantics is given by two judgements, a small-step relation
⇒ ⊆ (L × Σ) × (L × Σ), and its closure up to the end of the current frame, ⇓ ⊆
(L×Σ)×T . Both relations are indexed by the current method. The (mutually recursive)
relationship between these relations, and the rules for New, Goto, and Invokestatic are
shown in Figure 1. The rules for the other instruction forms are similar.

NEW
M(l) = New c a /∈ dom H


M l, (O, S,H)⇒ sucM (l), (a :: O,S,H [a �→ (c, [ ])])
GOTO

M(l) = Goto l′


M l, s⇒ l′, s

INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P

M′ initM′ , state(parM′ �→ O′,H) ⇓ H ′, v


M l, (O′@O, S,H)⇒ sucM (l), (v :: O, S,H ′)

COMP

M l, s⇒ l′, s′ 
M l′, s′ ⇓ t


M l, s ⇓ t RETURN
M(l) = Return


M l, (v :: O, S,H) ⇓ H,v

Fig. 1. Operational semantics: relations⇒ and ⇓ (excerpt)

3 Program Logic

3.1 Format of Assertions and Judgements

Judgements associated with program points involve formulae of the following three
forms, where B denotes the set of booleans.
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Assertions. A ∈ Assn = (Σ0 ×Σ) → B occur as preconditions A and annotations
Q, and relate the current state to the initial state of the current frame.

Postconditions. B ∈ Post = (Σ0 ×Σ × T ) → B relate the current state to the initial
and final state of a (terminating) execution of the current frame.

Invariants. I ∈ Inv = (Σ0 ×Σ ×H) → B relate the initial state of the current
method, the current state, and the heap component of a state of the current frame or
a subframe of the current frame.

The behaviour of methods is described using two assertion forms.

Method specifications. Φ ∈ MethSpec = (Σ0 × T ) → B constrain the behaviour of
terminating method executions and thus relate only their initial and final states.

Method invariants. ϕ ∈ MethInv = (Σ0 ×H) → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial state of a
method frame to all heaps that occur during the execution of the method.

A program specification consists of two parts. The method specification table M : (C ×
M) → (MethSpec × MethInv) defines the externally visible behaviour. In addition,
local annotations Q which constrain the behaviour at intermediate program points are
collected in a partial map Q : ((C ×M) × L) ⇀fin Assn . For the remainder of this
section, let M and Q denote some arbitrary but fixed specification and annotation tables.

3.2 Interpretation of Assertions and Judgements

In addition to the operational judgements defined in Figure 1, the interpretation of the
program logic refers to two auxiliary relations. The first one, denoted by �M l, s ⇒∗

l′, s′, is the reflexive and transitive closure of ⇒ and is defined in the standard way. The
second relation, denoted by �M l, s ⇑ s′ and defined in Figure 2, extends ⇒∗ by also
relating l, s to s′ if s′ is a state that occurs later than s either in the same frame as s or in
a subframe of that frame. This is achieved by the rule R-INVS that relates the call-state
of a method invocation to the initial state of the subframe.

R-REFL 
M l, s ⇑ s R-TRANS

M l, s⇒ l′, s′ 
M l′, s′ ⇑ s′′


M l, s ⇑ s′′

R-INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P

M′ initM′ , state(parM′ �→ O′,H) ⇑ s


M l, (O′@O,S,H) ⇑ s

Fig. 2. Auxiliary operational relation ⇑

Definition 1. A triple (A, B, I) is valid at � = M, l, notation |= {A} � {B} (I), if for
all s0 and s with �M initM , s0 ⇒∗ l, s and A(s0, s),

– if �M l, s ⇓ t then B(s0, s, t),
– if �M l, s ⇑ s′ then I(s0, s, heap(s′)), and
– if �M l, s ⇒∗ l′, s′ and Q(M, l′) = Q then Q(s0, s

′).
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Note that the third clause applies to annotations Q associated with future labels l′ in the
same method M , and that these are interpreted without direct recourse to the current
state s, although the proof of Q(s0, s

′) may exploit the precondition A(s0, s).
In order to store recursive proof assumptions during the verification of loops, proof

contexts G may be used. These are finite maps which associate triples (A, B, I) to
program points �.

Definition 2. Context G is called valid, notation |= G, if |= {A} � {B} (I) holds for
all G(�) = (A, B, I). Similarly, specification table M is valid, notation |= M, if all M ,
Φ and ϕ with M(M) = (Φ, ϕ) satisfy |= {A}M, initM {BΦ} (Iϕ), where

A = λ (s0, s). s = state(s0)
BΦ = λ (s0, s, t). s = state(s0) → Φ(s0, t), and

Iϕ = λ (s0, s, H). s = state(s0) → ϕ(s0, H).

Finally, program P is valid, notation |= P , if there is a G such that |= G and |= M.

3.3 Assertion Transformers

In order to notationally simplify the presentation of the proof rules, we define operators
that relate assertions occurring in judgements of adjacent instructions. The operators
for simple instructions,

PRE (M, l, A)(s0, r) = ∃ s l′. �M l, s ⇒ l′, r ∧A(s0, s)
POST (M, l, B)(s0, r, t) = ∀ s l′. �M l, s ⇒ l′, r → B(s0, s, t)
INV (M, l, I)(s0, r, H) = ∀ s l′. �M l, s ⇒ l′, r → I(s0, s, H)

resemble WP-operators, but are separately defined for pre-conditions, post-conditions,
and invariants. In the case of method invocations, we replace the reference to the oper-
ational judgement by a reference to the method specification, and include the construc-
tion and destruction of a frame

PRE sinv (Φ, A, par ) = λ (s0, s). ∃ O S H ′ H O′ v. s = (v :: O, S, H ′) ∧
Φ((par �→ O′, H), (H ′, v)) ∧A(s0, (O′@O, S, H))

POST sinv (Φ, B, par ) = λ (s0, s, t). ∀ O S H ′ H O′ v. s = (v :: O, S, H ′) →
Φ((par �→ O′, H), (H ′, v)) → B(s0, (O′@O, S, H), t)

INV sinv (Φ, I, par ) = λ (s0, s, H). ∀ O S H ′ H ′′ O′ v. s = (v :: O, S, H ′) →
Φ((par �→ O′, H ′′), (H ′, v)) → I(s0, (O′@O, S, H ′′), H)

Finally, the rule for the conditional jump instruction involves operators that take the
dependence on the outcome of the branch condition into account:

A+ = λ (s0, s). ∀ O S H. s = (0 :: O, S, H) → A s0 s

A− = λ (s0, s). ∀ O S H z. s = (z :: O, S, H) → z �= 0 → A s0 s

B+ = λ (s0, s, t). ∀ O S H. s = (0 :: O, S, H) → B(s0, s, t)
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B− = λ (s0, s, t). ∀ O S H z. s = (z :: O, S, H) → z �= 0 → B(s0, s, t)
I+ = λ (s0, s, H). ∀ O S H ′. s = (0 :: O, S, H ′) → I(s0, s, H)
I− = λ (s0, s, H). ∀ O S H ′ z. s = (z :: O, S, H ′) → z �= 0 → I(s0, s, H),

3.4 Proof Rules

The proof system is presented in Figures 3 and 4, and has two judgement forms, G �
{A} � {B} (I) and G � 〈A〉 � 〈B〉 (I). Both forms associate a program point to a pre-
condition, a postcondition, and an invariant, relative to a proof context G. The motiva-
tion for using two judgement forms stems from the interaction between the rules that
alter the flow of control inside a method frame (for the language considered in this
paper only conditional and unconditional jumps, but in general also instructions that
may throw an exception) and the rule AX that extracts such assumptions from G. Our
approach separates the usage of an assumption from its justification. The axiom rule
can only be used to derive judgements of the form that is required in the hypothesis
of the syntax-directed rules, G � 〈A〉 � 〈B〉 (I). In contrast, the definition of verified
programs requires us to discharge an assumption G(�) = (A, B, I) by exhibiting a
proof of G � {A} � {B} (I). Such a proof cannot simply consist of an application
of the rule AX, but will necessarily end (modulo applications of the rule CONSEQ-F)
in a syntax-directed rule. Consequently, the justification of an assumption is forced to
inspect the corresponding code block, eliminating the possibility to insert arbitrary (in-
correct) assumptions. In order to chain together a sequence of syntax-directed rules,
we introduce a further rule, INJ, that turns a derivation of G � {A} � {B} (I) into one
of G � 〈A〉 � 〈B〉 (I) – but no rule is given for converting in the opposite direction.
The separation into two judgement forms thus represents an alternative to global well-
definedness conditions on derivation trees, as it enforces that assumptions in G can not
be justified vacuously by reference to G but only by inspecting the corresponding code
block. Semantically, the judgement forms differ in bounds the number of operational
steps for which a judgement is required to be valid.

The proof rules are oriented such that the conclusion is an unconstrained judgement
and proof hypotheses refer to successor instructions. Hence, a verification condition
generator may be defined as a proof strategy that traverses the program in the direction
of the flow of control.

Syntax-directed rules. The syntax-directed rules are shown in Figure 3, and are moti-
vated as follows.

Rule INSTR describes the behaviour of basic instructions.

basic(M, l) ≡ M(l) ∈
{

Load x, Store x, Const z, Unop u, Binop o,
New c, Getfield c f, Putfield c f

}
The hypothetical judgement for the successor instruction involves assertions that are
related to the assertions in the conclusion by the basic transformers presented in the
previous section. In addition, the side conditions SC 1 and SC 2 ensure that the invariant
I and the local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s) → I(s0, s, heap(s))
SC 2 = ∀Q. Q(M, l) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))
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INSTR

basic(M, l) SC 1 SC 2

G 
 〈PRE(M, l, A)〉M, sucM (l) 〈POST (M, l, B)〉 (INV (M, l, I))

G 
 {A}M, l {B} (I)

GOTO

M(l) = Goto l′ SC 1 SC 2

G 
 〈PRE (M, l,A)〉M, l′ 〈POST (M, l,B)〉 (INV (M, l, I))

G 
 {A}M, l {B} (I)

IF0

M(l) = If0 l′ SC 1 SC 2

G 
 〈PRE (M, l,A+)〉M, l′ 〈POST (M, l,B+)〉 (INV (M, l, I+))
G 
 〈PRE (M, l,A−)〉M, sucM (l) 〈POST (M, l, B−)〉 (INV (M, l, I−))

G 
 {A}M, l {B} (I)

INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P M(M ′) = (Φ, ϕ) SC 1 SC 2

∀ s0 O S H O′ H ′. A(s0, (O
′@O, S,H ′)) → ϕ (parM′ �→ O′,H ′)H

→ I(s0, (O
′@O, S,H ′),H)

G 
 〈PRE sinv (Φ,A, parM′)〉M, sucM (l) 〈POST sinv (Φ,B, parM′)〉
(INV sinv (Φ, I, parM′))

G 
 {A}M, l {B} (I)

RET

M(l) = Return SC 1 SC 2

∀ s0 v O S H. A(s0, (v :: O,S,H))→ B(s0, (v :: O, S,H), (H,v))

G 
 {A}M, l {B} (I)

Fig. 3. Program logic: syntax-directed rules

In particular, SC 2 requires us to prove any annotation that is associated with the current
label l, in contrast to the clause in the interpretation of judgements in Definition 1.
Satisfaction of I in later states, and satisfaction of local annotations Q′ of later program
points are guaranteed by the judgement for sucM (l). Similarly, the rules for conditional
and unconditional jumps include a hypothesis on the jump target, and side conditions
for annotations and invariants. In the rule for conditional jumps, a further hypothesis
models the fall-though case, and the dependency on the outcome of the branch condition
is taken into account by the operators A+ etc..

In rule INVS, the method invariant ϕ and the precondition A may be exploited to
establish the invariant I . This ensures that I will be satisfied by all heaps that arise
during the execution of M ′, as these heaps will always conform to ϕ. In contrast, the
specification Φ is used to construct the assertions that occur in the judgement for the
successor instruction. Both conditions reflect the transfer of the method arguments to
the formal parameters of the invoked method corresponding to the constructions of a
new frame in the operational semantics. Similarly, the return value and the final heap
are (in a terminating execution) handed back to the invoking method, where they are
used to construct the assertions for the successor instruction.
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Finally, rule RET ties the precondition A to the post-condition B w.r.t. the terminal
state that is constructed using the topmost value of the operand stack.

Logical rules. The logical rules are shown in Figure 4. We have rules of consequence

CONSEQ-T

G 
 〈A′〉 � 〈B′〉 (I ′) ∀ s0 s. A(s0, s)→ A′(s0, s)
∀ s0 s t. B′(s0, s, t)→ B(s0, s, t) ∀ s H. I ′(s0, s,H)→ I(s0, s,H)

G 
 〈A〉 � 〈B〉 (I)

CONSEQ-F

G 
 {A′} � {B′} (I ′) ∀ s0 s. A(s0, s)→ A′(s0, s)
∀ s0 s t. B′(s0, s, t)→ B(s0, s, t) ∀ s H. I ′(s0, s,H)→ I(s0, s,H)

G 
 {A} � {B} (I)

INJ
G 
 {A} � {B} (I)
G 
 〈A〉 � 〈B〉 (I) AX

G(�) = (A,B, I) ∀ s0 s. A(s0, s)→ I(s0, s, heap(s))
∀Q. Q(�) = Q→ (∀ s0 s. A(s0, s)→ Q(s0, s))

G 
 〈A〉 � 〈B〉 (I)

Fig. 4. Program logic: logical rules

for both judgement forms, the above-mentioned rule for mediating between the two
judgement forms, and the axiom rule. As is the case in traditional program logics, the
rules of consequence allow pre-conditions to be strengthened, while post-conditions
and invariants may be weakened.

Definition 3. P is verified, notation � P , if there is a G such that G � {A} � {B} (I)
holds whenever G(�) = (A, B, I), and for all M , Φ, and ϕ, M(M) = (Φ, ϕ) implies

G � {λ (s0, s). s = state(s0)} M, initM {λ (s0, s, t). s = state(s0) → Φ(s0, t)}
(λ (s0, s, H). s = state(s0) → ϕ(s0, H))

Note the correspondence of the latter condition with Definition 2.

3.5 Soundness

The proof of soundness establishes that verified programs are valid, and consists of two
steps. We first prove that G � {A} � {B} (I) implies |= {A} � {B} (I) under the hy-
pothesis that all assumptions in G are valid, and likewise all method specifications in
M. Following [29,5], this proof proceeds by introducing relativised notions of valid-
ity that restrict the interpretation of judgements to operational judgements of bounded
height. The second step discharges the validity assumptions on G and M by proving
that verified programs guarantee the validity of G and M for arbitrary bounds.

Theorem 1. If � P then |= P .

In particular, this theorem implies that for � P all method specifications in M are hon-
oured by their respective method implementations. As the proof has been formalised in
Isabelle/HOL [12] we omit the details.
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4 Interpretation of Type Systems

In addition to supporting the verification of programs w.r.t. JML specifications, a pro-
gram logic for bytecode should also support the compositional formulation of program
analysis results. In this section, we demonstrate how this can be achieved for analyses
phrased as type systems. As property of interest we consider static constant bounds on
heap consumption, with allocation-free loops. For this task, Cachera et al. presented an
abstract-interpretation-based analysis at the bytecode level which involves the formal-
isation of various program analysis tasks (identification of mutually recursive program
structures, identification of method calls in loops,. . . ) in the theorem prover [15]. The
correctness proof of their analysis thus includes a verification of the inference mech-
anism. During the verification of concrete programs, the fixed-point iteration and the
calculation of solutions to the resulting constraints are carried out in the theorem prover.

In contrast, our type-based approach proceeds as follows. We first define an assertion
format that expresses when a code block whose initial instruction is located at � is guar-
anteed not to allocate more than n memory cells. This results in a derived proof system
for bytecode in which all judgements are of the restricted form. Then, we consider a
simple (first-order) functional language and prove that code resulting from compiling
this language into bytecode satisfies the boundary asserted by a high-level type system:
derivability in the type system guarantees derivability in the specialised program logic
for the assertion interpreting the type. Thus, we avoid the formalisation of any inference
mechanism (type inference). Only the outcome of the inference, a digest of the typing
derivation, needs to be communicated from proof producer to proof consumer.

As a further difference to Cachera et al., our analysis is phrased at an intermedi-
ate language level. This is motivated by the fact that modern compilers perform many
analysis and optimisation tasks using intermediate code representations where addi-
tional program structure can be exploited. Given that our analysis as phrased as a type
system, we chose to employ a low-level functional language similar to A-normal form
[18]. The similarity between such languages and the imperative program representation
Static Single Assignment (SSA, [16]) has been observed by Appel and Kelsey [3,23].

Specialised program logic for bytecode. For each number n, we define a triple �n� =
(A, B, I) consisting of a precondition, a post-condition, and an invariant.

�n� ≡ λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s,H). |H | ≤ |heap(s)|+ n

Here, |H | denotes the size of heap H . We specialise the two judgement forms to

G � � {n} ≡ let (A, B, I) = �n� in G � {A} � {B} (I)
G � � 〈n〉 ≡ let (A, B, I) = �n� in G � 〈A〉 � 〈B〉 (I).

Thus, the derivability of a judgement G � � {n} guarantees that the code located
at � allocates at most n items, in terminating (postcondition B) and non-terminating
(invariant I) executions. For (A, B, I) = �n� we also define the method specification

Spec n ≡ (λ (s0, t). B(s0, state(s0), t), λ (s0, H). I(s0, state(s0), H)).
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Specialising the logic to these judgement forms yields the following rules, with empty Q.

C-NEW

M(l) = New c
G 
M, sucM (l) 〈n〉
G 
M, l {n+ 1} C-INSTR

basic(M, l) ¬M(l) = New c
G 
M, sucM (l) 〈n〉

G 
M, l {n}

C-RET
M(l) = Return

G 
M, l {0} C-GOTO
M(l) = Goto l′ G 
M, l′ 〈n〉

G 
M, l {n}

C-IF
M(l) = If0 l′ G 
M, l′ 〈n〉 G 
M, sucM (l) 〈n〉

G 
M, l {n}

C-INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P
G 
M, sucM (l) 〈n〉 M(M ′) = Spec k

G 
M, l {n+ k} C-INJ
G 
 � {n}
G 
 � 〈n〉

C-SUBF
G 
 � {n} n ≤ m

G 
 � {m} C-SUBT
G 
 � 〈n〉 n ≤ m

G 
 � 〈m〉 C-AX
G(�) = n

G 
 � 〈n〉

C-VP

∀M. M ∈ dom P → (∃ n. M(M) = Spec n ∧G 
M, initM {n})
∀ � A B I. G(�) = (A,B, I)→ (∃ n. (A,B, I) = �n� ∧G 
 � {n})


 P

Intermediate-level type system. The syntax of the intermediate language is stratified
into primitive expressions and general expressions [18]. We include primitives for con-
structing empty and non-empty lists, and a corresponding pattern match expression. In
order to simplify the translation into bytecode, we use method identifiers M as function
names.

P " p ::= i | uop u x | bop o x y | Nil | Cons(x, y) | M(x1, . . . , xn)
E " e ::= prim p | let x = p in e | if x then e else e |

(case x of Nil ⇒ e | Cons(x, y) ⇒ e)

A program F : (C×M) ⇀fin (X list×E) consists of a collection of function declara-
tions in the standard way. Figure 5 presents the rules for a type system with judgements
of the form Σ � p : n and Σ � e : n. Signatures Σ map function identifiers to types n.
Apart from the construction of a non-empty list and function calls, all primitive expres-
sions have the trivial type 0. This includes Nil which is compiled to a null reference.
Program F is well-typed w.r.t. signature Σ, notation Σ � F , if dom Σ = dom F and
for all M , F (M) = (par , e) implies Σ � e : Σ(M).

Figure 6 defines a compilation �e�C
l into the bytecode language. The result (C′, l′)

extends the code fragment C by a code block starting at l such that l′ is the next free
label. Primitive expressions leave an item on the operand stack while proper expressions
translate into method suffixes.

Semantic type soundness for primitive expressions now shows that an execution
commencing at l satisfies the bound that is obtained by adding the costs for the sub-
ject expression to the costs for the program continuation.
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T-NIL
p /∈ {Cons(x, y),M(x1, . . . , xn)}

Σ � p : 0
T-CONS

Σ � Cons(x, y) : 1

T-CALL
Σ(M) = n

Σ � M(x1, . . . , xn) : n
T-LET

Σ � p : n Σ � e : m

Σ � let x = p in e : n+m

T-COND
Σ � e1 : n Σ � e2 : n

Σ � if x then e1 else e2 : n
T-SUB

Σ � e : m m ≤ n

Σ � e : n

T-PRIM
Σ � p : n

Σ � prim p : n
T-CASE

Σ � e1 : n Σ � e2 : n

Σ � case x of Nil⇒ e1 | Cons(x, y) ⇒ e2 : n

Fig. 5. Typing rules

�i�C
l = (C[l �→ const i], l + 1)

�uop u x�C
l = (C[l �→ load x, l + 1 �→ unop u], l + 2)

�bop o x y�C
l = (C[l �→ load x, l + 1 �→ load y, l + 2 �→ binop o], l + 3)

�Nil�C
l = (C[l �→ const Null], l + 1)

�Cons(x, y)�C
l = (C

l �→ load y, l + 1 �→ load x, l + 2 �→ new LIST,
l + 3 �→ store t, l + 4 �→ load t,
l + 5 �→ putfield LIST HD, l + 6 �→ load t,
l + 7 �→ putfield LIST TL, l + 8 �→ load t

, l + 9)

�M()�C
l = (C[l �→ Invokestatic M ], l + 1)

�M(x1, . . . , xn)�C
l = �M(x1, . . . , xn−1)�C[l�→load xn]

l+1

�prim p�C
l = let (C1, l1) = �p�C

l in (C1[l1 �→ Return], l1 + 1)

�let x = p in e�C
l = let (C1, l1) = �p�C

l , (C2, l2) = (C1[l1 �→ store x], l1 + 1)

in �e�C2
l2

�if x then e1 else e2�C
l = let (CE, l2) = �e2�C

l+2, (CT , l1) = �e1�CE
l2

in (CT [l �→ load x, l + 1 �→ If0 l2], l1)�
� case x of

Nil⇒ e1
| Cons(x, y) ⇒ e2

�
�

C

l

= let (CC , lN ) = �e2�C
l+9, (CN , l1) = �e1�CC

lN
in

(CN

l �→ load x, l + 1 �→ unop (λ v. v = Nullref),
l + 2 �→ If0 lN , l + 3 �→ Load x,
l + 4 �→ Getfield LIST HD, l + 5 �→ Store h,
l + 6 �→ Load x, l + 7 �→ Getfield LIST TL,
l + 8 �→ Store t

, l1)

Fig. 6. Translation into bytecode

Proposition 1. If Σ � p : n, �p�C
l = (C1, l1), and G � M, l1 〈m〉, then G �

M, l {n + m}.

For proper expressions, the soundness result does not mention program continuations,
since expressions compile to code blocks that terminate with a method return.
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Proposition 2. If Σ � e : n and �e�C
l = (C1, l1) then G � M, l {n}.

Both results are easily proven by induction on the typing judgement. For presentational
reasons we have omitted technical side conditions that ensure that the table M contains
precisely the interpretations of Σ, and that the global program P contains precisely the
translations of F , where for each entry, we reverse the list of formal parameters due to
the order in which the translation pushes arguments onto the operand stack. Denoting
these conditions by �Σ� and �F �, respectively, we obtain overall type soundness, i.e. the
verifiability of well-typed programs:

Theorem 2. If Σ � F then � �F �.

Again, the proof has been formalised in Isabelle/HOL [12].

5 Discussion

We presented a program logic for bytecode suitable for translating features found in
modern specification formalisms and for interpreting type systems in a compositional
way. Using a judgement format which separates postconditions, invariants, and annota-
tions, the logic supports reasoning about terminating and non-terminating executions.

The necessity of complementing partial-correctness assertions by guarantees that ap-
ply to intermediate states and non-terminating computations has also been observed by
Hähnle and Mostowski [19]. Based on an extension of first-order dynamic logic with
trace modalities [9], they discuss the verification of transaction properties in the context
of JAVACARD. Similar requirements arise from object invariants [26] and idioms like
ESC-Java’s validity of objects [17]. The logics developed in connection with the LOOP
tool (e.g. [21]) apply at the source code level, or a representation of source code and
(JML) specifications in a theorem prover. Various termination modes are considered in
[21], but some rules, such as the rule for while, can only be applied in special circum-
stances. The logic is formulated as a set of derived proof rules, so proof search may
always fall back on the underlying operational semantics. In contrast, our formulation
as a syntactic proof system admits a study of (relative) completeness, following the
approach of Kleymann, Nipkow, and ourselves [24,29,5].

The usage of expressive program logics as a mediating formalism between the op-
erational semantics of a low-level language and type systems was already explored in
our previous work [13]. Here, we presented an interpretation in a partial-correctness
program logic of a type system for bounded heap consumption where the amount
of memory used may depend on the structural size of input data [20]. The encoding
involved formulae that express the structured use of a freelist and enforce various dis-
jointness conditions. Heap-represented data structures are required to obey a linear typ-
ing regime. The interpretations of the typing rules are formally derived in the theorem
prover in such a way that the partitioning of the heap into regions holding particular
data structures is performed once, during the derivation of the proof rules. Compared
to the verification of application programs using separation logic [31], the verification
using the derived proof rules proceeds at a higher-level, for the price of being lim-
ited to programs originating from high-level code that obeys a particular typing disci-
pline. Compared to the FPCC approach of formalising type systems [4], the explicit
use of a program logic introduces a useful abstraction barrier. Proof patterns arising
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repeatedly in the verification of program analyses (e.g. the verification of recursive pro-
gram structures) can be dealt with once-and-for-all. Thus, the program logic may serve
as a formalism in which different program analyses may be compared and integrated.

In contrast to our approach of interpreting typing calculi, Benton’s logic [11]
includes (basic) type information in judgements, extending bytecode verification con-
ditions. Consequently, methods can be given more modular specifications that, for ex-
ample, constrain the heap to the segment relevant for the verification of the method
body, similar to separation logic [31]. In our approach, such local-reasoning principles
would be formulated in the interpretation of type judgements, i.e. in derived proof rules
[13]. As a further difference, Benton’s logic is interpreted extensionally, by reference to
program contexts. This enables Benton to prove that certain program transformations
are semantics-preserving (see also [10]), while we primarily aim to certify intensional
properties such as the consumption of resources [6].

A further approach to integrating types and program logics is proposed by Nanevski
and Morrisett [27]. Following a two-level approach that separates effectful from pure
computations, Hoare-triples describing side-effecting computations are injected into the
type system using a monadic type constructor. The result is a rich, dependently typed
reasoning framework whose operational soundness has been established using progress-
and preservations lemmas. An extension that treats polymorphism and supports local
reasoning using constructs from separation logic appears in [2].

As was mentioned in the introduction, our logic has already been extended to a sub-
stantial fragment of the JVML. The basis of this extension is the Bicolano formalisation
of the JVML [30]. In connection with this effort, Benjamin Gregoire recently proposed
a variation of our soundness proof that eliminates the auxiliary notion of step-indexed
validity. Based on his observation, a new formalisation has been produced using the Coq
theorem prover. In addition, work is currently under way to include further specifica-
tion idioms, in particular ghost items and modifies-clauses, by translating them into the
format proposed in this paper. It is planned to extend the logic towards multi-threaded
programs. For this, we expect the form of invariants presented in the present paper to be
particularly useful. Over time, we thus expect that the presented formalism will yield a
solid foundation for the certification of functional and non-functional code properties.
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contained therein. We are grateful to all members of the MOBIUS Working Group 3.1
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1. E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. An assertion-based proof system
for multithreaded Java. Theoretical Computer Science, 331(2-3):251–290, 2005.

2. L. B. Aleksandar Nanevski, Greg Morrisett. Polymorphism and Separation in Hoare Type
Theory. In Proceedings of the 11th ACM International Conference on Functional Program-
ming (ICFP 2006). ACM Press, Sept. 2006. To appear.



404 L. Beringer and M. Hofmann

3. A. W. Appel. SSA is functional programming. ACM SIGPLAN Notices, 33(4):17–20, 1998.
4. A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on Logic

in Computer Science (LICS), Proceedings. IEEE Computer Society, 2001.
5. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic

for resource verification. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Theorem
Proving in Higher Order Logics, 17th International Conference, TPHOLs’04. Proceedings,
volume 3223 of LNCS, pages 34–49. Springer, 2004.

6. D. Aspinall, L. Beringer, and A. Momigliano. Optimisation validation. In J. Knoop, G. C.
Necula, and W. Zimmermann, editors, Proceedings of the 5th International Workshop on
Compiler Optimization Meets Compiler Verification (COCV’06), ENTCS. Elsevier, 2006.
To appear.

7. F. Y. Bannwart and P. Müller. A logic for bytecode. In F. Spoto, editor, Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), volume 141(1) of ENTCS, pages
255–273. Elsevier, 2005.

8. G. Barthe. Mobius – Mobility, Ubiquity and Security. http://mobius.inria.fr.
9. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with trace
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Abstract. Jones optimality is a criterion for assessing the strength of
a program specializer. Here, the elements required in a proof of Jones
optimality are investigated and the first formal proof for a non-trivial
polyvariant specializer (Unmix) is presented. A simplifying element is the
use of self-application. Variations of the original criterion are discussed.

1 Introduction

When using a specializer, it is desirable to know how “strong” it is. Likewise,
when engineering a new specializer, it is desirable to know when the design is
“good enough”. Jones proposed a criterion [6], now known as Jones optimality,
for judging the strength of a specializer. Originally, it was presented as an aid
for engineering a self-applicable partial evaluator [7], which led to some thinking
this is its only value. Over the last decade, however, the notion proved useful as
a standard for assessing other aspects of a specializer’s strength. For example, a
Jones-optimal specializer can overcome inherited limits [10], and it is a necessary
condition for a specializer to be translation universal (i.e., for any compiler an
interpreter exists such that the target programs produced by specializing the
interpreter are as efficient as those produced by the compiler) [3].

Although the practical and theoretical implications of the criterion have be-
come clearer, many specializers are still only believed to be Jones-optimal and,
to our knowledge, only lambda-mix (a small partial evaluator for the lambda-
calculus that does not use the usual polyvariant program-point specialization)
has formally been shown to satisfy the criterion [15]. On the other hand, for
some specializers, such as FCL-mix, it has been argued that they are not Jones-
optimal [4]. Thus, while Jones optimality may be plausible in some cases, the
question is usually not settled conclusively for more realistic specializers.

In this paper, the elements required in a proof of Jones optimality for non-
trivial systems are investigated and Unmix, a system based on the classical
offline partial evaluator Mix [8], is shown to be Jones-optimal (in a refined sense
wrt a set of optimized programs, which also under suitable conditions implies
Jones optimality [7]). With use of a partial evaluator that exhibits the essential
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features of offline partial evaluators in general, it is hoped that this study may
serve as a useful guideline for investigating more realistic partial evaluators.
More specifically, the contributions of this paper are to:

1. Establish that the self-applicable partial evaluator Unmix is Jones-optimal.
2. Confirm the need for variable splitting to achieve Jones optimality of spe-

cializers in languages with multiple parameters.
3. Give a framework for proving Jones optimality of more realistic specializers.
4. Explore practical issues for proving Jones optimality (e.g., textual equality

vs. timed semantics and modularization of proofs by self-applicability).

The paper is organized as follows. Section 2 reviews specialization with focus on
the arity of programs. Section 3 introduces Jones optimality and Sect. 4 presents
the Unmix case study. Sections 5 and 6 discuss related work and conclusions.
Familiarity with the basics of partial evaluation is assumed [7, Part II].

2 Program Specialization and Multi-parameter Programs

This section introduces the notation and terminology used in the paper, which
should be fairly standard for readers familiar with partial evaluation. Neverthe-
less, to sensitize the reader to the effects of an arbitrary number of parameters,
they are treated in greater detail than is usual. Understanding the subtle im-
plications of multi-parameter programs is essential for proving Jones optimality
of specializers for many untyped languages, including Unmix. A connection to
the tagging problem known from specializing self-interpreters for strongly typed
languages [2,9,10,16] will be made. The notation is adapted from Jones et al. [7].1

All programming languages in the text are assumed to be Turing-complete and
untyped. In addition, every program has a fixed, but arbitrary number of parame-
ters. Unless stated otherwise, the same language is intended as the source,
residual, and implementation language of self-interpreters and specializers. We as-
sume that the set of input values, D, includes the set of all programs,P , and all lists
(i1, . . . , in) where i1, . . . , in are input values. The notation .= denotes equality
of partial values: Either both sides are defined and equal or both are undefined.

Definition 1 (Program evaluation, running time). The result (if any) of
evaluating a program p ∈ P with arity n ≥ 0 and inputs i1, . . . , in ∈ D is
denoted by [[p]] i1 · · · in, and the running time is denoted by Time(p, i1, . . . , in).
The partial order ≤Time for n-ary programs p and q is defined by:

p ≤Time q ⇔ ∀i1, . . . , in .Time(p, i1, . . . , in) ≤ Time(q, i1, . . . , in) (1)

A program specializer is a program that given another program (the subject pro-
gram) and some of its inputs (the static data), produces a residual program that
gives the same result when evaluated with the remaining inputs (the dynamic
data) as the subject program does when evaluated with all of its input.
1 To make a clear distinction between evaluating programs whose input is a tuple (or

more generally a list) from evaluating those with multiple inputs, the arguments are
not surrounded by braces, e.g., in [[p]] (a, b) there is only one input, a tuple.
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Definition 2 (Program specializer). A program spec is a specializer iff for
all programs p ∈ P with arity n ≥ 0 and for all inputs i1, . . . , in ∈ D:

[[[[spec]] p (i1, . . . , im)]] im+1 · · · in
.= [[p]] i1 · · · in, 0 ≤ m ≤ n (2)

The specializer can specialize subject programs with any arity n ≥ 0 where
the first m inputs of the program are static. The specializer has two arguments
(a subject program and a list of static inputs). There is no general agreement
whether a specializer should always terminate. The above definition allows non-
terminating specializers (the left hand side of (2) can be undefined in two ways:
The specializer or the residual program may fail to terminate). For non-trivial
specializers, as discussed in [7], equality .= in (2) is usually weakened to: If both
sides are defined, they are equal. (This is also the case for Unmix).

Central to the definition of Jones optimality is the notion of a self-interpreter.

Definition 3 (Self-interpreter). A program sint is a self-interpreter iff it is
written in the language it interprets, and for all programs p ∈ P with arity n ≥ 0
and for all inputs i1, . . . , in ∈ D:

[[sint]] p (i1, . . . , in)
.= [[p]] i1 · · · in (3)

2.1 Effects of Multi-parameter Programs

The well-known first Futamura projection states that one can translate a pro-
gram p by specialization of an interpreter. In the special case of a self-interpreter,
the residual program, p′, is written in the same language: p′ = [[spec]] sint (p).
Combining equations (2) and (3) yields

[[p′]] (i1, . . . , in)
.= [[sint]] p (i1, . . . , in)

.= [[p]] i1 · · · in (4)

From the equation, it is evident that p′ has one input, a list of values, while p
has n inputs. Consequently, programs p and p′ can never be textually identical:
p′ requires (at least) an extra function to unpack the contents of the input list,
or worse, if nothing is done in spec to prevent it, all parts of p′ will operate
on a list and hence be less efficient than p. This is a consequence of the source
language: In any language where programs have an arbitrary, but fixed number of
parameters, the self-interpreters written in the language require a data structure,
such as a list, to hold an arbitrary number of input values. This is a problem
because Jones optimality [7] relies on the property that p′ is not slower than p.

The issue can be viewed as an instance of the problem encountered when
specializing self-interpreters for strongly typed languages, where the interpreted
program’s inputs must be encoded in a universal type Univ . In this context, even
though strongly typed languages are not considered, the fixed arity of programs
requires the inputs to be encoded as a list. A solution for typed languages was
found [9] by placing the self-interpreter between a pair of encoding and decoding
programs, that map values of different types to and from the input type, Univ ,
of sint: P × Univ → Univ . If the type of a program is p: α → β, then a self-
interpreter sintα→β : P × α → β for all programs of that type is defined by
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sintα→β = decodeβ ◦ sint ◦ (id × encodeα), where ◦ denotes composition of
programs, encodeα: α → Univ maps values of type α into the representation
used by sint, and decodeβ :Univ → α performs the inverse (the program p
need not be encoded, thus the identity id). Hence, sintα→β maps p’s input of
type α to sint’s input type, and maps sint’s output back into a value of type β.
Nothing is changed in sint; it is only placed between an encoder and a decoder.

Similarly, define a self-interpreter sintn: P ×Dn → D for n-ary programs by

sintn = id ◦ sint ◦ (id× encoden) (5)

where encoden: Dn → D is given by [[encoden]] i1 · · · in = (i1, . . . , in). As all
programs have the same output type, the decoder id can be omitted. Thus,

[[sintn]] p i1 · · ·in
.= [[sint]] p (i1, . . . , in) (6)

Translating program p using sintn results in

p′′ = [[spec]] sintn (p) (7)

Combining equations (2), (3) and (6) gives

[[p′′]] i1 · · · in
.= [[sintn]] p i1 · · · in

.= [[p]] i1 · · · in (8)

Now, it is possible for p and p′′ to be textually identical. Therefore, sintn is
used to define a multi-parameter version of Jones optimality [7].

Definition 4 (Jopt-≤Time). A specializer spec is Jones-optimal iff a self-
interpreter sint exists such that for all programs p ∈ P with arity n ≥ 0,
and sintn as defined in (5):

[[spec]] sintn (p) ≤Time p (9)

3 A Framework for Proving Jones Optimality

This section discusses a variation of Jones optimality and proof structures.

3.1 Timed Semantics

Agreeing on a timing function may be difficult. However, any reasonable timing
function should time textually identical programs identically. So, if one can prove
textual identity modulo insignificant details, such as variable names, it is possible
to conclude, irrespectively of any concrete timing function, that spec is indeed
Jones-optimal. This was done for lambda-mix. In a more realistic context, even if
insignificant details are ignored by a suitable textual equivalence � on programs,
it may not be possible to prove �-equivalence as realistic specializers typically
perform further optimizations of the residual programs. The residual program
may therefore be textually quite different from the source program.

A way to isolate the problem of the specializer being too powerful for textual
equality to hold is to restrict the domain of programs for which a specializer is
said to be Jones-optimal to an “optimized” Turing-complete subset Popt of P .
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Definition 5 (Optimized programs). Let opt be a total translator such that
∀p ∈ P . [[opt]] p ≤Time p, then the set Popt ⊆ P is Popt = { [[opt]] p | p ∈ P }.

Definition 6 (Jopt-Popt). A specializer spec is Jones-optimal wrt Popt iff a
self-interpreter sint exists such that for all programs q ∈ Popt with arity n ≥ 0,
and sintn as defined in (5):

[[spec]] sintn (q) � q (10)

The intention is that spec will not “over optimize” programs in Popt, so estab-
lishing textual equivalence is isolated from how to define opt.

Once spec is found to be Jones-optimal on some Popt, it follows that

∀q ∈ Popt with arity n . [[spec]] sintn (q) � q

⇐⇒ ∀p ∈ P with arity n . [[spec]] sintn ([[opt]] p) ≤Time p (11)

If for any arity n ≥ 0, spec can reduce away the static expressions in sintn
opt=

id◦sint◦(opt×encoden), i.e., if [[spec]] sintn
opt (p)

.= [[spec]] sintn ([[opt]] p),
then spec is Jones-optimal in the sense of Def. 4 with sintn

opt.

3.2 Self-applicable Specializers

To prove Jones optimality, it is necessary to analyze both the specializer and the
self-interpreter to determine how the self-interpreter is specialized wrt source
programs. This two-level problem can be simplified considerably when the spe-
cializer is self-applicable: Using the second Futamura projection to turn sintn

into a compiler compn reduces the problem to examining the compiler. Given
compn = [[spec]] spec (sintn) the program p′′′ = [[compn]] (p) is textually
identical to p′′ in (7). So, it remains to show that compn is an identity:

∀q ∈ Popt with arity n . [[compn]] (q) � q (12)

In the best case, compn will be a straightforward implementation of an identity
on programs making the proof simple. That is, to prove Jones optimality of spec
wrt Popt it is sufficient to show that a self-interpreter sint exists such that for
all q ∈ Popt with arity n ≥ 0: [[[[spec]] spec (sintn)]] (q) � q.

For the equation to hold, both the generation of the compiler and the gen-
erated compiler must always terminate (although termination of the generation
process is verified by the existence of the produced compiler, an argument is
required to show that the compiler always terminates).

3.3 Structure of Jones Optimality Proofs

To prove Jopt-Popt of spec one needs to: (1) give a definition of opt, (2) give a
definition of textual equivalence �, (3) write a self-interpreter sint, and (4) ar-
gue that for any n ≥ 0 the compiler, compn, generated using spec and sintn,
produces target programs that are �-equivalent to the source programs.
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4 Case Study: Jones Optimality of Unmix

The Unmix system [12] is presented with a focus on the details necessary for
proving Jones optimality. Unmix is a self-applicable offline partial evaluator for a
first-order, purely functional subset of Scheme.2 It was developed by Romanenko,
and is a further development of the well-known partial evaluator Mix [8].

4.1 Structure and Properties of Unmix

The following diagram illustrates the structure of the Unmix system.

Desugar Preprocessing
Specialization

proper Postprocessing Ensugar

Unmix Core

Mixwell programs

Parameter
description

Static input
data

The core of the specializer works with the internal language Mixwell [8], so as
first and last steps, programs are translated from Scheme to Mixwell and back
(desugar and ensugar in the diagram). As the two steps are exterior to the
partial evaluation itself, they will not be considered further. The proof of Jones
optimality will be for the Unmix core, which consists of three main phases:

Preprocessing. The subject program is annotated according to the results of
a monovariant binding-time analysis.

Specialization. The annotated program is specialized wrt the static input data.
Postprocessing. Three transformations are done on the residual program:

(1) first call graph reduction, (2) arity raising, (3) last call graph reduction.

The Mixwell Language. Mixwell is a first-order, purely functional language.
It has call-by-value semantics and is statically scoped. The abstract syntax is
given in Fig. 1. A program consists of a series of function definitions, the first of
which is called the goal function and defines the meaning of the program. The
input to a program is given through the formal parameters of the goal function.
The usual static requirements apply: (1) all function definitions have unique
names, (2) all parameters in a function definition have unique names, (3) all
variables occurring in the body of a function are defined in the parameter list,
(4) the arity of function calls and function definitions must match, and (5) all
functions that are called are defined.

The semantics of the constructs are like those in Scheme. The annotation
construct rcall is functionally equivalent to call, which is a call to a function.

2 Strictly speaking, a variant of Scheme because the language contains some macro
facilities as well as certain annotation constructs not present in Scheme.
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〈Program〉 ::= 〈FunDef 〉+

〈FunDef 〉 ::= (〈Fname〉 (〈Vname〉∗) = 〈Exp〉)
〈Exp〉 ::= 〈Constant〉 | 〈Vname〉

| (〈UnOp〉 〈Exp〉) | (〈BinOp〉 〈Exp〉 〈Exp〉)
| (call 〈Fname〉 〈Exp〉∗) | (rcall 〈Fname〉 〈Exp〉∗)
| (if 〈Exp〉 〈Exp〉 〈Exp〉)

〈UnOp〉 ::= car | cdr | null? | pair? | symbol? | not
〈BinOp〉 ::= cons | equal? | eq? | eqv? | + | - | * | /
〈Constant〉 ::= 〈Atom〉 | (quote 〈S-expression〉)

Fig. 1. Abstract syntax of Mixwell

Call Graph Reduction. The call graph reduction (CGR) is based on the
automatic call unfolding method [14] and performs local expression reductions,
such as reducing (car (cons e1 e2)) to e1.3 Local reductions are applied to
every function body. For every function call (call g e1 . . .en), reduced versions
e∗i of the argument expressions ei are computed (this may involve further call
reductions); then, the call is either unfolded or left in its reduced form. The
unfolding strategy prevents infinite unfolding as well as call and code duplication.
All calls not marked as cutpoints and not satisfying the check below are unfolded:

1. To prevent infinite unfolding, all calls to at least one function in each recur-
sive call chain are suspended. Such cutpoints are determined by a call graph
analysis. The call graph of a program is a directed multigraph, the vertices
of which consist of the program’s functions, and with an edge from f to g
for each call to g in the body of f. A recursive call chain is a cycle in the
call graph.

2. To prevent call and code duplication, the following check is performed for a
call to a function g. If there exists a reduced argument expression e∗i that is
not an atom (or a quoted atom), and the corresponding formal parameter
xi occurs more than once in a branch of the body of g, then the call is not
unfolded. This conservative strategy prevents call and code duplication.

The CGR is not idempotent: Applying it several times to a program can lead
to further reductions. We will later use the following always-true function that
is only unfolded by a second CGR after the reductions by a first CGR removed
a code duplication risk.

Example. Consider the small program:

(f (x) = (if (call true-const (cons x x)) A B)) ; call as predicate

(true-const (y) = (if #t #t (cons y y))) ; always true

3 In general, the reductions do not preserve the termination properties of the program.
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The local reduction of the first CGR attempts to unfold the call to true-const
in f, but as (cons x x) in the call is not an atom and the corresponding param-
eter y occurs twice in the false-branch, the call is not unfolded. However, local
reduction simplifies true-const to (true-const′ (y) = #t).

The second CGR applied to the resulting program can now unfold the call
to true-const′ and perform a local reduction in f, producing (f′ (x) = A).
Clearly, a third CGR does no more simplifications. It is easy to see that the
example can be generalized to require any other fixed number of CGRs.

Arity Raiser. Arity raising is a method for variable splitting, which potentially
raises the arity of functions. The arity raiser in Unmix [11] performs monovariant
arity raising in the sense that it does not produce different variants of a function
according to different usage patterns, but only one version that accommodates
all usage patterns. The arity raiser will never discard unused parameters. A
parameter is discarded iff, in all calls to a function, the corresponding argument
has the same atomic value and the type of the parameter is not generalized; see
usefulness below. First, the idea of arity raising is illustrated with some examples,
and then a more formal discussion follows.

Example. Consider a program where an argument to g is constructed just to be
deconstructed in g. This implies that the parameter y in g can be split.

(f (x) = (call g (cons x x))) ; construct value

(g (y) = (cdr y)) ; deconstruct value

Split parameter y and change all calls to g into calls to the new g′:

(f′ (x) = (call g′ (car (cons x x)) (cdr (cons x x)))) ; add selectors

(g′ (y1 y2) = (cdr (cons y1 y2))) ; split parameter

Finally, perform local expression reduction:

(f′ (x) = (call g′ x x)) ; simplify body

(g′ (y1 y2) = y2) ; simplify body

When to split. The example illustrates how splitting is done, but does not explain
when a split should be made. To split a variable, two criteria must be satisfied:

1. Feasibility. It must be feasible to split, meaning that neither semantic errors
nor code/computation duplication will be introduced. To ensure that a split
is semantically valid, it must be impossible to split a variable whose value
may be an atom during a program evaluation. For example, it is incorrect
to split parameter y in g:

(f () = (call g 1)) (g (y) = y)

To avoid code/computation duplication, a split must not increase the number
of selectors (car, cdr) in a program: All selectors introduced by a split must
be eliminable by local expression reduction.

2. Usefulness. A split is deemed useful if the number of selectors in a program
decreases. For example, it is not useful to split parameter y in g:

(f (x) = (call g (cons x x))) (g (y) = y)
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Feasibility and usefulness. To establish feasibility and usefulness, two global
analyses are performed. First, a forward analysis determines feasibility by ana-
lyzing the structure of the variables (argument type analysis); second, a backward
analysis determines usefulness by analyzing the use of the variables (parameter
access analysis). Both analyses use the following set of types to describe the
structure of the variables (where A ∈ 〈Atom〉):

Type " τ ::= any | atom〈A〉 | cons(τ, τ) | ⊥

The set Type is equipped with a reflexive partial ordering ≤ (illustrated by the
diagram) defined by ⊥ ≤ τ ≤ any for all τ ∈ Type, and
cons(τ ′

1, τ
′
2) ≤ cons(τ ′′

1 , τ ′′
2 ) if τ ′

1 ≤ τ ′′
1 and τ ′

2 ≤ τ ′′
2 . If

τ ′ ≤ τ ′′ and τ ′ �= τ ′′, then the latter, τ ′′, is referred to
as more general. It is easy to see that the set Type with
≤ is a complete partial ordering with no ascending
chains of infinite height. ⊥

cons(τ ′, τ ′′)atom〈A〉

any

����

����

With the above types, the feasibility and usefulness criteria can be formalized:

Feasibility. A function parameter is deemed feasible to split if its associated
type is of the form cons(τ ′, τ ′′) for some τ ′, τ ′′ ∈ Type. The type is establi-
shed by computing the least upper bound of the corresponding argument
type in all calls to the function. The analysis is similar to a binding-time
analysis [7]. For details, please see the original paper [11].

Usefulness. A parameter will be split if its associated type is of the form
cons(τ ′, τ ′′) for some τ ′, τ ′′ ∈ Type. A way to avoid the splitting will be
to generalize the type to any. With this observation, the usefulness require-
ment is formalized as: A type should only be retained (not generalized) if it
causes at least one selector (car, cdr) in the program to disappear.
The criterion is implemented as follows. If a variable has a preliminary type
(as established by the feasibility analysis) other than cons(τ ′, τ ′′), for some
τ ′, τ ′′ ∈ Type, it is left unchanged, otherwise it is generalized to any exactly
when all access paths in the total context for the variable are empty. The
definitions of access path and total context are given below. For parameters
of type cons(τ ′, τ ′′), this implies that, if the parameter does not occur in the
function body, the type will be generalized to any.

Definition 7 (Access path, total context). An access path is a list (possibly
empty) of selector names (i.e., a list where every entry is either car or cdr).
The total context of a variable x in a function f is the set of all valid access
paths. More specifically, for each subexpression (sel1(sel2(· · ·(seln x)· · ·)))
in the body of f, where seli is either car or cdr, the set of valid access paths
is {[], [seln], [seln, seln−1], . . . , [seln, seln−1, . . . , sel1]}. The total context is
then given by the union of the sets of valid access paths for each subexpression.

The final type of a variable indicates how many times a split will occur. A variable
with a type containing n occurrences of cons will be split into n variables. For
example, a variable with type cons(τ1, cons(τ2, cons(· · · , cons(τn, τ ′

n) · · ·))), where
τ1, . . . , τn and τ ′

n contain no cons, is split into n variables.
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4.2 Jones Optimality of Unmix

Following the approach in Sect. 3, Jones optimality of Unmix will now be shown.
First, two basic notions are defined: The set of source programs and the textual
equivalence. Next, the self-interpreter is introduced and the following character-
istics are established:

1. The specific structure of the residual programs after specialization proper.
2. The first CGR does not unfold any calls in the residual programs.
3. Near textual equivalence of source and residual programs after arity raising.
4. Textual equivalence of source and residual programs after the last call CGR.

Set of Source Programs. As the goal is to show textual equivalence of source
and residual programs, a set of source programs that cannot be “more optimized”
by the specializer is sought. The program mwopt used in the definition of Pmwopt
is defined by the following actions on Mixwell source programs:

1. CGR and arity raising are performed until no further changes occur in the
source program. (This terminates as the arity of each function can only be
raised a finite number of times and the CGR prevents infinite unfolding.)

2. Function definitions with textually identical parameters and body are re-
placed by a single definition and all function calls are updated accordingly.
Function definitions not reachable from the goal function are removed, and
every rcall is replaced by call.

Textual Equivalence. Two n-ary Mixwell programs p and q are textually
equivalent, p �mw q, if their list representation is identical disregarding (a) the or-
der of function definitions, (b) renaming of functions and parameters, and (c) an
initial forward function of the form (fwd (x1 . . . xn) = (call goal x1 . . . xn)).

Self-interpreter. The self-interpreter mwsint is fairly standard except that the
following issues must be addressed:4

1. Avoid unfolding of the goal function into the initial forwarding function.
2. For the arity raiser to raise the arity of a residual function to the level of the

source function, the last parameter must occur in the body of the function.

The first issue is addressed by annotating the call to the primary function in
the interpreter, exec, as residual with rcall. To address the last issue, the self-
interpreter changes all functions (f (x1 . . . xn) = e) to (f′ (x1 . . . xn) = (if
(call true-const (cons xn xn)) e xn)), where true-const is the always-
true function from Sect. 4.1. This ensures that the first CGR does not unfold
calls in the residual program, but it will reduce the body of true-const to #t.
The last CGR removes the dummy conditional in f′, as discussed in Sect. 4.1.

4 The self-interpreter source is included in App. A.
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(define ($pe-exp-$2 svv-$1 svv-$2 svv-$3) ; expression translation

(cond ((symbol? svv-$2) ($pe-exp-$3 svv-$2 svv-$3 vs ))

((not (pair? svv-$2)) ,svv-$2)

((equal? (car svv-$2) quote) ,(cadr svv-$2))

((equal? (car svv-$2) car)

(car ,($pe-exp-$2 svv-$1 (cadr svv-$2) svv-$3) ) )

((equal? (car svv-$2) cdr)

(cdr ,($pe-exp-$2 svv-$1 (cadr svv-$2) svv-$3) ) )

...))

(define ($pe-exp-$3 svv-$1 svv-$2 dvv-$1) ; variable translation:

(if (equal? svv-$1 (car svv-$2)) ; generate variable access

(car ,dvv-$1 )

($pe-exp-$3 svv-$1 (cdr svv-$2) (cdr ,dvv-$1 ) )))

Fig. 2. Fragment of the translating part generated from the self-interpreter. The boxes
mark the code being generated for the different constructs; also comments were added.

Generated Compiler. The self-interpreter is converted into a compiler by self-
application of Unmix. The compiler consists of two parts: One part translating
function definitions, and another part inherited from Unmix controlling the loop
over the source program and ensuring that the compiler always terminates. A
fragment of the translating part is shown in Fig. 2. As hoped for in Sect. 3.2,
the translation of source programs is essentially an identity function (like the
operator translation by pe-exp- 2), except for details such as code generation
for variables ( pe-exp- 3 generates a variable access). Not clearly visible from
the fragment is the fact that all functions (except the goal function) in the
residual program have only a single parameter (vs). Thus, in all residual calls, the
arguments are packed into a list of values with (cons rarg1 (cons · · · (cons
rargn ()) · · ·)), and instead of a variable in the source program, there is an
expression (car (cdr · · · (cdr vs) · · ·)) that accesses the value in the value
list. This representation is inherited from the self-interpreter, and specialization
proper does not remove the overhead. This is a limitation of many offline partial
evaluators and a reason why they may not be Jones-optimal.

Inspecting the compiler generated from the self-interpreter leads to the fol-
lowing theorem about the structure of residual programs before postprocessing.

Theorem 1 (Structure of residual programs). Given p ∈ Pmwopt with arity
j, the residual program ~p produced by specializing program mwsintj with respect
to the source program p has the form:

1. Residual functions. There is a one-to-one correspondence between the
functions in p and in ~p, except for two additional functions. Let ~f denote
the residual function in ~p that corresponds to the source function f in p. If
f has arity n then ~f has the form:

(exec- k (vs) = (if (call exec- 2 (cons (cons lv lv) ())) rbody lv)
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where k is a unique integer, lv is a variable access of the form given in 2a)
below with m = n (or lv = () if n = 0), and rbody corresponds to the body of
f. The two additional functions are a new goal function and an always-true
function, exec- 2. Assuming that the goal function in mwsintj is named
sintj with variables x1, . . . , xj, they have the form:

(sintj- 1 (x1. . .xj) = (call exec- 1 (cons x1 (cons· · ·(cons xj ())· · ·))))
(exec-$2 (vs) = (if #t #t (cons (car vs) (car vs))))

2. Residual expressions.
a) For every variable occurring in the body of a source function f, assuming

the variable is the m’th parameter of f, there is a variable access expres-
sion in the rbody of ~f:

(car (cdr (cdr · · · (cdr︸ ︷︷ ︸
m−1

vs)· · ·)))

b) For every call to a source function f with arity n, there is a corresponding
call in the residual program, where exec- k is the name of ~f and rargi
is the residual code generated from the arguments in the original call:

(call exec- k (cons rarg1 (cons · · · (cons rargn ())· · ·)) )

Proof. The proof is organized into one part dealing with residual functions and
another dealing with residual expressions:

1. The correspondence between f and ~f follows by inspection of the compiler
(the compiler discards any unreachable functions and merges functions with
identical body and parameter list, but p ∈ Pmwopt ensures no such functions
are present). The two extra functions are fixed pieces of the translating part
(omitted from Fig. 2 due to space constraints).
The form of residual functions is immediate from the main compiler loop
and the function $check-function-$1 in the translating part (omitted).

2. That all constructs other than variables and calls are translated literally
follows directly by inspection of the $pe-exp-$2 function.
To prove property 2a), observe that for a variable access the recursive func-
tion $pe-exp-$3 in the translating part is called. In this function initially
svv-$1 is bound to the variable that is accessed, svv-$2 is bound to the list
of parameter names of the function f, and dvv-$1 is bound to the symbol vs.
As the accessed variable is guaranteed to be in the list of parameter names
due to the static correctness of p, a simple induction proves the property.
The proof of property 2b) is obtained in two stages. Assuming f has the
form (f (vars) = body), then the translating part will generate intermedi-
ate code of the form

(call (exec pgm body vars) (cons rarg1 (cons · · · (cons rargn ())· · ·)) )

where n = arity(f), pgm denotes the program text of the source program,
and rargi denotes the residual code generated for the arguments. The inter-
mediate form follows from similar considerations as the variable access proof
(from pieces of the translating part not shown). Finally, the main compiler
loop replaces (exec pgm body vars) in the intermediate form by exec- k
where k is the integer corresponding to the residual function ~f. '(
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First CGR. The first CGR does not change the structure of a program ~p.
This follows immediately as the structure of the calls and functions in the resi-
dual program ensures that the duplication check is always satisfied (except for
functions with arity 0; however they must be cutpoints as p ∈ Pmwopt).

Lemma 1 (First CGR does not unfold calls). Given p ∈ Pmwopt, the first
CGR does not unfold any calls in p’s residual program ~p.

The CGR can perform immaterial (preserving the types in the arity raiser)
reductions of the argument expression in a function call. Consider a call as
shown in the structure theorem. If the arguments rargn down to rargi for i ≥ 1
are static, then the innermost n − i + 1 cons’es will be replaced by a list of
the static elements. The CGR will also, by design, simplify function exec- 2 to
(exec-$2 (vs) = #t) as discussed in the example in Sect. 4.1.

Arity Raiser. From the structure theorem, it follows that the only overhead
not deliberately introduced in the intermediate residual programs is related to
accessing variables and performing function calls. The following lemmas serve to
prove that the variable access overhead and function call overhead is removed by
the arity raiser. More specifically, it will be shown that raising the arity of any
residual function ~f to the arity of the corresponding source function f is feasible
and useful (and that raising it higher is not).

Lemma 2 (Feasibility of arity raising). Given p ∈ Pmwopt, the type assigned
by the feasibility analysis to parameter vs of a residual function ~f corresponding
to a source function f with arity n has the form

cons(τ1, cons(τ2, cons(· · · , cons(τn, atom〈()〉) · · ·))), τ1, . . . , τn ∈ Type

Proof. According to the structure theorem, each occurrence of a call to the
residual function ~f will have a type

cons(τ ′
1, cons(τ ′

2, cons(· · · , cons(τ ′
n, atom〈()〉) · · ·))), τ ′

1, . . . , τ
′
n ∈ Type

The type of the parameter vs is then given by the least upper bound of the
corresponding argument types in all calls to ~f. This establishes the feasibility of
raising the arity of ~f to the arity of f or higher, depending upon the unspecified
types τ1, . . . , τn. Note, if n = 0 the type is trivially atom〈()〉. '(

Lemma 3 (Usefulness of arity raising). Given p ∈ Pmwopt, it is useful to
raise the arity of a residual function ~f to the arity n of the corresponding source
function f.

Proof. The feasibility lemma states that the parameter vs has the type

cons(τ1, cons(τ2, cons(· · · , cons(τn, atom〈()〉) · · ·))), τ1, . . . , τn ∈ Type

Observe that the types τi for i = 1, . . . , n correspond to the types that would
be assigned to the parameters of the source function by the feasibility analysis
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(of p). As p ∈ Popt, the arity raiser cannot affect the source program, and
therefore any occurrences of cons in the types τi would be generalized by the
usefulness analysis (of p). Hence, the usefulness analysis of the residual program
will generalize the types. Therefore, without loss of generality, assume that none
of the τi for i = 1, . . . , n contains any occurrences of cons.

To establish the usefulness, it is necessary to show that the type of vs is not
generalized any further, i.e., that none of the n remaining cons are generalized.
That is, it suffices to show that there is an access path [cdr, cdr, . . . , cdr, car]
with n − 1 cdr’s. As lv in the structure theorem part 1 is a variable access of
the form (car (cdr (cdr · · · (cdr︸ ︷︷ ︸

n−1

vs)· · ·))), the required access path exists

and it is useful to split vs into n parameters. Note, if n = 0 the type is trivially
atom〈()〉 (in this special case, the arity will therefore be reduced to 0). '(

Last CGR. The following lemma ensures textual equivalence wrt �mw since
after unfolding all calls to exec- 2 the conditional in the body of the functions
becomes static, so the expression reduction of the CGR will reduce the bodies
to code �mw-equivalent to the bodies of the source program.

Lemma 4 (Unfolding by the last CGR). Given p ∈ Pmwopt, the last CGR
unfolds only the calls to exec- 2 in ~p and possibly the call from the new goal
function to the original goal function.

Proof. The only new edges in the call graph for ~p as compared to p (where
no unfolding can take place) are those to exec- 2 and that from the new goal
function to the original goal function. As exec- 2 cannot be a cutpoint and
none of the calls to it can satisfy the call and code duplication check it is always
unfolded. '(
Theorem 2 (Unmix is Jones-optimal wrt Pmwopt). For all p ∈ Pmwopt of
any arity, the partial evaluator Unmix is Jones-optimal according to Def. 6 with
the self-interpreter mwsint in App. A, and the textual equivalence relation �mw.

Unmix and Jones Optimality wrt Time. The theorem established that
Unmix is Jones-optimal wrt Pmwopt. Note how the question of a suitably timed
semantics has been separated from the main task of proving Jones optimality,
and now hinges on the definition of mwopt. In a suitably timed semantics, where
program size does not affect the running time and each primitive operation
takes a fixed number of time units, none of the actions performed by mwopt
will worsen the running time of a program. In addition, as the binding-time
analysis of Unmix annotates fully static functions as computable, mwopt will be
computed at specialization time if made part of the self-interpreter. Thus, with
these assumptions, Unmix is also Jones-optimal in the sense of Def. 4.

5 Related Work

Recent work on Jones optimality has focused on developing methods for tag-eli-
mination when specializing self-interpreters for strongly typed languages
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[2,5,9,16]. Type specialization [5] performs retyping as part of the specialization
process, while other work [2,9,16] added an extra phase and sometimes relied on
manual annotation. Often, the authors conjecture Jones optimality after a few
experiments. To our knowledge, the only proof was given for lambda-mix, but
it only allows programs with single-variable abstractions and no user-defined
functions (a program is one lambda-expression) [15]. It was given by examin-
ing an annotated self-interpreter and arguing with respect to the semantics of
the specializer.

These and related work indicate that Jones optimality is easier to state than to
achieve in practice. The first implementation of a specializer that could remove
the interpretive overhead was the offline partial evaluator Mix [13], but this
required manual annotation for variable splitting.

Jones optimality provides a good property in general to identify inherited
limits of a specialization method [10]. A formal status to the term “optimal”
in the name of the criterion was given by showing that Jones optimality is a
necessary condition for any specializer to be translation universal [3].

6 Conclusion

Despite the importance of Jones optimality for program specialization, few spe-
cializers have been shown to satisfy the criterion. In this paper, we addressed
this unsatisfactory situation by investigating Jones optimality of more realistic
partial evaluators.

Our aim was to identify and exemplify the main principles and issues in-
volved in such an investigation. This was done by studying the partial evaluator
Unmix. The system is non-trivial in that it consists of several transformation
phases, includes polyvariant program-point specialization, an arity raiser and
two call graph reductions, and allows for self-application and compiler genera-
tion; not all of these features are present in some of the smaller partial evaluators
(e.g., lambda-mix, FCL-mix). As Unmix was not engineered with Jones optima-
lity in mind, but merely to be “good enough” for compiler generation, various
properties of the specializer had to be treated specially, such as ensuring that
the arity of residual functions is raised to the arity in the source program. Un-
mix is a direct descendant of the classical partial evaluator Mix, which provided
the basic techniques used in all offline partial evaluators. For these reasons, the
issues addressed here are very likely to occur in larger systems (but with addi-
tional complexities), so further studies should be able to benefit from the steps
described here.

The proof of Jones optimality for Unmix contains several important elements,
such as the conversion of the self-interpreter into a compiler using the self-
applicable specializer itself as a tool, which considerably reduces the amount
of code that needs to be reasoned about, and the isolation of the timing seman-
tics from the main proof to separate the concerns.
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A The Self-interpreter

The Mixwell-interpreter mwsint3 with goal function sint3 written in Scheme
(before translation into Mixwell). The goal function expects Mixwell-programs
with three inputs. The omitted operations are similar to the cases shown.
; Interpret a program with three inputs.
(define (sint3 prg x1 x2 x3)

(sint prg (list x1 x2 x3))) ; encode the inputs as a list

; Interpret a program with a list of inputs.
(define (sint prg vs)

(let ((newprg (rewrite-prg prg)))
(rcall (exec newprg (car (cdr (cdr (cdr (car newprg))))) (car (cdr (car newprg))) vs))))

; Interpret an expression.
(define (exec prg e ns vs)

(if (symbol? e) (lookup-val e ns vs)
(if (not (pair? e)) e
(if (equal? (car e) quote) (car (cdr e))
(if (equal? (car e) car) (car (exec prg (car (cdr e)) ns vs))
(if (equal? (car e) cdr) (cdr (exec prg (car (cdr e)) ns vs))
(if (equal? (car e) cons) (cons (exec prg (car (cdr e)) ns vs)

(exec prg (car (cdr (cdr e))) ns vs))
(if (equal? (car e) null?) (null? (exec prg (car (cdr e)) ns vs))
(if (equal? (car e) pair?) (pair? (exec prg (car (cdr e)) ns vs))
(if (equal? (car e) equal?) (equal? (exec prg (car (cdr e)) ns vs)

(exec prg (car (cdr (cdr e))) ns vs))
...
(if (equal? (car e) if) (if (exec prg (car (cdr e)) ns vs)

(exec prg (car (cdr (cdr e))) ns vs)
(exec prg (car (cdr (cdr (cdr e)))) ns vs))

(if (equal? (car e) call) (eval-call (lookup-fn (car (cdr e)) prg) prg e ns vs)
... #f)))))))))))))))))))))

; Evaluate a function call (call-by-value).
(define (eval-call fn prg e ns vs)

(exec prg (car (cdr (cdr (cdr fn)))) (car (cdr fn)) (eval-args prg (cdr (cdr e)) ns vs)))

; Evaluate the list of function arguments and return a list of values.
(define (eval-args prg e ns vs)

(if (null? e) () (cons (exec prg (car e) ns vs) (eval-args prg (cdr e) ns vs))))

; Lookup the definition of a function in prg.
(define (lookup-fn fname prg)

(if (equal? fname (car (car prg))) (car prg) (lookup-fn fname (cdr prg))))

; Lookup the value of a variable in (ns, vs)-environment.
(define (lookup-val vname ns vs)

(if (equal? vname (car ns)) (car vs) (lookup-val vname (cdr ns) (cdr vs))))

; Rewrite the program so that the last parameter of every function occurs in its body.
(define (rewrite-prg prg)

(if (null? prg) ((true-const (x) = (if #t #t (cons x x)))) ; add true-const to prg
(let ((fn (car prg)))

(cons (rewrite-fn (car fn) (car (cdr fn)) (car (cdr (cdr (cdr fn)))))
(rewrite-prg (cdr prg))))))

; Rewrite function definition by adding occurrences of the last parameter.
(define (rewrite-fn fname fparams fbody)

(let ((lv (last fparams)))
(,fname ,fparams = (if (call true-const (cons ,lv ,lv)) ,fbody ,lv))))

; Return the last element of lst.
(define (last lst)

(if (pair? lst) (if (null? (cdr lst)) (car lst) (last (cdr lst))) lst))
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